ROKAE 路石

人类生产生活的得力伙伴

xMate SR3-C

硬件安装手册

文档编码: DOC-00001793

文档版本: 2.0-A

本手册中记载的内容如有变更, 恕不事先通告。本公司对手册中可能 出现的错误均不承担任何责任。

本公司对因使用本手册及其中所述产品而引起的意外或间接伤害均不 承担任何责任,敬请谅解。

本公司不可能预见所有的危险和后果,因此本手册不能警告用户所有可能的危险。

禁止擅自复印或转载本手册的部分或全部内容。

如您发现本手册的内容有误或需要改进抑或补充之处,请不吝指正。

本手册的原始语言为中文,所有其他语言版本均翻译自中文版本。

©版权所有 2015-2020 ROKAE 保留所有权利 珞石(山东)智能科技有限公司 中国.山东

目录

1	手册概	挺	7
	1.1	关于本手册	7
	1.2	手册对象	7
	1.3	如何阅读产品手册	7
	1.4	本手册中的插图	7
	1.5	相关产品文档	7
	1.6	垂询方式	7
2	安全		8
	2.1	简介	8
		2.1.1 安全责任说明	8
		2.1.2 拟定用途	8
	2.2	安全声明	8
		2.2.1 说明	8
	2.3	安全设备	8
		2.3.1 紧急停止	8
		2.3.2 使能开关	9
	2.4	机器人紧急停止类型	10
		2.4.1 紧急停止	.10
	2.5	工作中的安全事项	10
		2.5.1 操作人员安全	
		2.5.2 操作示教器的安全事项	. 11

	2.5.3 从忌停状心恢复	11
	2.5.4 手动模式的安全事项	11
	2.5.5 自动模式的安全事项	12
	2.5.6 火灾事故的安全处理	12
	2.5.7 触电事故的安全处理	13
	2.6 作业人员及内容要求	13
	2.6.1 作业人员定义	13
	2.6.2 作业人员要求	13
	2.6.3 作业内容要求	14
	2.7 安全培训	15
	2.7.1 概述	15
	2.7.2 作业人员的安全	15
	2.8 使用前评估	16
3 7	产品概述	17
	3.1 简介	17
	3.2 机器人	17
	3.2.1 概述	17
	3.2.2 机器人系统	17
	3.2.3 转动方向与坐标系定义	17
	3.3 机器人示教器概述	19
	3.3.1 示教器概述	19
	3.3.2 示教器构成	19

3.4	1 标志和标签	19
4 技术	规格	21
4.1	简介	21
4.2	2 机型型号说明	21
4.3	3 技术参数	21
	4.3.1 本体参数	21
	4.3.2 控制柜参数	22
	4.3.3 示教器参数 (示教器为选配)	23
4.4	1 工作空间	23
4.5	5 允许载荷	24
	4.5.1 手腕允许力矩和惯量	24
	4.5.2 手腕最大允许负载曲线	25
	4.5.3 负载惯量的计算	25
	4.5.4 关节力矩限额	26
5 开箱	与安装	27
5.1	简介	27
5.2	2 安装流程表	27
5.3	3 环境条件	27
5.4	1 开箱与硬件 安装	28
	5.4.1 开箱	28
	5.4.2 机器人运输角度与搬运部位	29
	5.4.3 安装前检查	30

5.5	现场安装	30
	5.5.1 搬运	30
	5.5.2 安装机器人	30
	5.5.3 法兰	32
	5.5.4 安装控制柜	33
	5.5.5 示教器安装 (示教器为选配)	35
6 电气连	接	37
6.1	电气布局	37
6.2	控制柜接口	37
	6.2.1 控制柜电源输入	38
	6.2.2 控制柜上电	39
	6.2.3 示教器接口	39
	6.2.4 扩展 IO 接口	39
	6.2.5 通用 DIDO(普通版本)	39
	6.2.6 安全 DIO(普通版本)	41
	6.2.7 通用 DIDO(RSC 版本)	43
	6.2.8 安全 DIO(RSC 版本)	46
	6.2.9 扩展 EtherNet 口	49
	6.2.10 Ethercat 扩展口	49
	6.2.11 USB 接口(未启用)	49
	6.2.12 HDMI 接口(未启用)	49
	6.2.13 EtherCAT 伺服驱动调试口	49

6.2.14 把手功能按键及接口	49
6.3 模拟输入	52
6.4 电源适配器 (选配)	52
6.4.1 电源适配器上电	53
6.4.2 电源输入	53
6.4.3 电源输出	54
6.5 示教器 (选配)	54
6.5.1 示教器按钮说明	54
6.5.2 如何握持示教器	54
7 维护	55
7.1 简介	55
7.2 关于维护时的安全	55
7.3 维护计划	55
7.4 检查	55
7.5 清洁	55
8 零点标定	57
8.1 简介	57
8.1.1 概述	57
8.1.2 什么是机械零点	57
8.1.3 什么是零点标定	57
8.1.4 何时需要零点标定	57
8.2 标定方法	57

	8.2.1 机械标定	57
9 停用.		59
9.1	停用机器人	59
9.2	回收	59
10 修订	· 记录	61

DOC-00001793 / 2.0-A 1 手册概述

1 手册概述

1.1 关于本手册

感谢您购买本公司的机器人系统。

本手册记载了正确安装使用机器人的以下说明:

- ●机器人的机械和电气安装。
- ●机器人的维护及校准。

安装使用该机器人系统前,请仔细阅读本手册与其他相关手册。阅读之后,请妥善保管,以便随时取阅。

1.2 手册对象

本手册面向:

- ●安装人员。
- ●维护人员。

请务必保证以上人员具备机械、电气安装和维护所需的知识,并已接受本公司的相关培训。

1.3 如何阅读产品手册

本手册包含单独的安全章节,必须在阅读安全章节后,才能进行安装或维护作业。

1.4 本手册中的插图

由于产品升级或其他原因,产品手册中的一些图片可能会与实际产品存在差异,但操作步骤 是正确的。

同时,对于某些通用的信息,可能会使用其他型号机器人的图片进行说明。

1.5 相关产品文档

本手册为xMate SR3-C机器人的产品手册,应与以下手册同时使用:

●《xCore 机器人控制系统使用手册》

1.6 垂询方式

机器人维护、维修等相关事项,请与本公司售后部门或当地经销商联系。 联系时,请准备好如下信息:

- ●机器人型号/序列号
- ●软件名称/版本
- ●系统出现的问题

2 安全 DOC-00001793 / 2.0-A

2 安全

2.1 简介

本章介绍在使用xMate SR3-C机器人时需要注意的安全原则和流程,在第一次通电前,xMate SR3-C机器人的用户必须仔细阅读并理解这些信息。

与机器人外部安全防护装置的设计、安装有关的内容不在本章描述范围之内,请与您的系统集成商联系以获得此类信息。

2.1.1 安全责任说明

珞石机器人致力于提供可靠的安全信息,但不对此承担责任。即使一切操作都按照安全操作说明进行,也不能确保xMate SR3-C机器人不会造成人身和财产方面的损失。

除安全章节外,请注意在文档的必要部分有其他的安全提示。

2.1.2 拟定用途

xMate SR3-C机器人的使用应符合当地的法律法规,不允许违规使用在违背法律法规的用途上。按规定使用机器人还包括遵守各单个部件的产品手册说明,包括对其描述的操作、安装、维护说明等内容。

以下违规的使用应被禁止:

- 运输人员和动物
- 在有爆炸危险的环境中使用
- 在可燃性环境中使用
- 在允许的范围之外使用
- 在井下使用

xMate SR3-C机器人是柔性协作机器人,拟用作操纵工具/末端执行器和夹具,或用于加工或传递零件或产品。 xMate SR3-C机器人具备特殊的安全相关特征,这些特征是特地为协同操作而设计的,也就是说机器人系统可以在没有护栏的情况下工作,或者和人类一起工作。协同操作仅针对无危险的应用,即包括工具/末端执行器、工件、障碍物及其他机器在内的经过特定应用的风险评估证明不具备任何重大危险的完整应用。

任何与拟定用途相违背的用途或应用都是不允许的,

这包括但不限于以下内容:

- 用于潜在性爆炸环境
- 用于医疗和生命攸关的应用
- 未作风险评估就使用的
- 超出规定的规格使用
- 作为攀登用具使用的
- 在允许的操作参数之外进行操作

2.2 安全声明

2.2.1 说明

- 操作控制机器人需提前评估安全风险,并按照本文档提及的安全规范使用机器人。
- 对机器人使用过程存在不确定的风险需咨询珞石公司技术支持人员,非建议情况使用 出现问题不在支持范围。

2.3 安全设备

2.3.1 紧急停止

DOC-00001793 / 2.0-A 2 安全

2.3.1.1 紧急停止的定义

紧急停止是机器人系统中优先级最高的功能。按下紧急停止按钮将触发急停,此时所有其他 的机器人控制功能将停止,机器人停止运动且各关节电机的动力电将被切断,控制系统切换 紧急停止状态,在释放急停之前该状态将一直保持。

如需恢复运行,需先释放急停按钮,各关节电机才能执行上电指令。

提示

不能将紧急停止作为正常的程序停止,否则将对机器人的抱闸系统和传动系统造成额外而不必要的磨损,降低机器人的使用寿命。

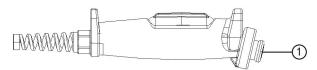


图 2-1 手持急停使能手柄上的急停按钮

图 2-2 xPad2 示教器的急停按钮

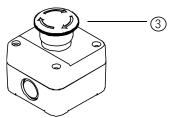


图 2-3 急停盒上的急停按钮

2.3.2 使能开关

2.3.2.1 使能装置

使能装置 (Enabling Device) 是一个具有 2 段按压 3 个位置的特殊开关,又称三位使能开关 (以下简称使能开关),用于在手动模式下控制机器人的关节动力电源的通断,由此来实现机器人的运动使能。

只有按下使能开关并保持在中间位置时才会接通电机电源,使得机器人处于允许运动的状态,。松手放开或者用力按压到底都会将电源切断。

2 安全 DOC-00001793 / 2.0-A

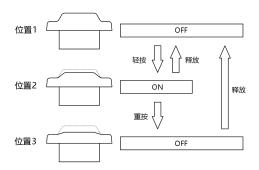


图 2-4 使能按键位置状态

提示

手动模式下,使能开关当按压到中间位置时电机动力电源接通并使能,系统处于 Motor On 状态,可以进行 Jog 或者运行程序。松开或者按到底时电机动力电切断,系统回到 Motor Off 状态。

为了安全的使用机器人,必须遵守以下要求:

- 在任何情况下都必须保证使能开关可以正常工作;
- 在编程和调试期间,当不需要机器人运动时应尽快松开使能开关; 任何进入机器人工作空间的人员必须随身携带手持使能,以避免其他人在内部人员不知 情的情况下启动机器人。

警告

严禁使用外部装置将使能开关卡住使其停留在中间位置

2.4 机器人紧急停止类型

2.4.1 紧急停止

根据安全规范 ISO 13850 和 IEC 60204, 机器人用到的停止类型分为:

- STOPO, 机器人电机下电, 同时抱闸闭合。
- STOP1, 机器人通过规划停止运动, 再执行电机下电抱闸闭合

xMate SR3机器人 STOP0 用于手持急停信号处理。

2.5 工作中的安全事项

2.5.1 操作人员安全

2.5.1.1 基本原则

必须遵守以下几条简单的原则以便安全的操作机器人:

- 当有工作人员处于机器人的安全防护区域内时,建议使用手动模式操作机器人;
- 当您进入机器人的安全防护区域时,建议将手持急停拿在手上,以确保机器人在您的 控制之下;
- 留意安装在机器人上的会活动工具,在靠近机器人之前,要确保这些工具已经停止运 行;
- 留意机器人抓手及所抓持的物品。如果抓手打开,工件有可能会掉落造成人员受伤或 者设备损坏。此外机器人使用的抓手可能非常强力,如果不按规范使用也可能会造 成伤害;

DOC-00001793 / 2.0-A 2 安全

2.5.2 操作示教器的安全事项

2.5.2.1 安全存放示教器

当不使用示教器时,应将示教器妥善存放在远离机器人工作站的地方,不能让操作人员误认 为这个示教器仍然连接在机器人上,以免出现危险时试图使用没有连接到机器人上的示教器 来停止机器人。

2.5.2.2 示教器电缆

示教器与控制柜之间通过示教器电缆进行连接,在使用示教器时,为了避免发生人员伤害或设备损坏,请遵守以下要求:

- 确保工作人员不会绊到示教器电缆,并导致示教器跌落或人员摔倒。
- 不要挤压示教器电缆, 否则可能会损坏内部线芯。
- 不要把示教器电缆放在尖锐的边缘处,否则可能会损坏电缆护套。
- 确保示教器电缆的弯曲半径大于 100mm, 否则可能会损坏电缆。

2.5.2.3 示教器使用权限

通常经过安全培训、基础操作培训的人员才可认为有权限使用示教器。操作示教器界面的人员也应该有使用权限的区分,以保证调试人员、维护人员根据自身所负责的事务来正确、合理的使用示教器。

控制系统内置了三个级别的用户,根据操作权限从低到高分别是 operator, admin 和 god。 从低权限用户切换到高权限用户需要输入密码,反之则不用。高权限的用户可以修改相同或 更低级别用户的密码,operator 级别用户密码不能修改。

2.5.2.4 无示教器模式

当控制系统选择为无示教器模式时,需特别注意调试、编程时的安全,需保证操作人员的近距离范围内安装或放置有急停按钮设备,且急停按钮的信号接入到机器人系统的安全 IO 接口中,以便人员在遇到紧急情况时可及时按下急停按钮来保护自身和设备的安全。

2.5.3 从急停状态恢复

2.5.3.1 说明

系统处于急停状态时必须执行复位操作以便回复到正常状态。复位过程非常简单但是非常重要,它保证了机器人系统不会以危险状态投入到生产运行中。

2.5.3.2 急停按钮及复位

急停按钮位于手持急停使能手柄上和示教器的右上角,有一个安全锁机制,被按下后必须手 动释放来复位装置的急停状态。按照按钮表面的旋转方向标识旋转按钮,即可释放急停状 态。

2.5.4 手动模式的安全事项

2.5.4.1 关于手动模式

在手动模式机器人的运动处于手动控制下。只有在使能开关处于中间位置时,才能对机器人 进行 Jog 或者运行程序。使能开关位于手持急停使能的手柄上和示教器的握持处。

2.5.4.2 手动模式下的速度限制

在手动模式下, 机器人末端的运动速度被限制在 250 mm/s 以下, 即无论是 Jog 机器人还是

xMate SR3-C硬件安装手册 11

手动模式用于编写、调试机器人程序以及参与工作站试运行调试。

2 安全 DOC-00001793 / 2.0-A

运行程序,机器人的最大运动速度不会超过 250 mm/s,不论程序中设置的速度是多少。

2.5.4.3 旁路外部安全信号

在手动模式下,外部安全装置如安全门、安全光栅等信号将被旁路,即在手动模式下即使安全门被打开系统也不会处于急停状态,以方便进行调试。

2.5.5 自动模式的安全事项

2.5.5.1 关于自动模式

自动模式用于在正式生产过程中运行机器人程序。

自动模式下使能开关将被旁路,因此机器人可以在没有人员参与的情况下自动运行。

危险

自动模式下,机器人会按照用户程序中设定的速度运动,机器人末端最高速度可达到 3.2m/s,请注意此模式下,人员不可进入机器人运动范围,否则极有可能会发生人员损 伤。

2.5.5.2 启用外部安全信号

外部安全信号如安全门、安全光栅等在自动模式下会启用,安全门打开会触发紧急停止。

2.5.5.3 安全处理生产中的故障

绝大多数情况下,机器人都属于一条生产线的一部分,因此机器人出现故障往往不只影响机器人工作站本身,同样的当生产线其他部分出现问题时也可能会影响到机器人工作站。因此应由对整个生产线非常熟悉的人员来设计故障补救方案,以提高安全性。

● 需关注机器人周围仍保持运行的其他设备

例如在某条生产线上,机器人需要从传送带上抓取工件。如果机器人出现故障,为了保证生产过程不中断,在检修机器人的同时传送带保持运行,此时机器人维修人员应该额外考虑在运行中的传送带旁边工作的安全措施。

● 需关注与机器人进行交互的其他设备

例如,一个焊接机器人需要进行例行维护而将该机器人从生产线上脱离出来时,也必须停止为该机器人上料的机器人,以免造成人员伤害。

2.5.6 火灾事故的安全处理

2.5.6.1 轻度火灾的处理措施

在即将发生火灾危险或火灾已经发生但尚未蔓延开来的情况下,不要惊慌,保持镇定,使用现场提供的灭火装置将火焰扑灭。严禁用水扑灭因短路导致的火灾。

警告

机器人工作现场使用的灭火装置需由用户提供,用户需根据现场实际情况,选择合适的 灭火装置。如果是控制器发生火灾,请使用二氧化碳(CO2)灭火器。

2.5.6.2 重度火灾的处理措施

当火灾已蔓延开来、处于不可控状态时,现场工作人员不要再试图灭火,应立即通知其他工作人员,放弃私人物品,尽快从紧急出口向外撤离,撤离时禁止使用电梯,撤离过程中同时呼叫消防队。

若有人员衣物着火,不要让他/她跑动,应让他/她迅速平躺在地上,用衣服或其它合适物品、方式将火扑灭。

DOC-00001793 / 2.0-A 2 安全

2.5.7 触电事故的安全处理

2.5.7.1 触电事故的处理

当发现有人触电,不要惊慌,首先要尽快切断电源,根据现场具体条件,果断采取适当的方 法和措施:

- 如果电源开关或按钮距离触电地点很近,应迅速拉开开关,切断电源。
- 如果电源开关或按钮距离触电地点很远,可用绝缘手钳或用干燥木柄的斧、刀、铁锹等切断电源侧(即来电侧)的电线,切断的电线不可触及人体。
- 当导线搭在触电人身上或压在身下时,可用干燥的木棒、木板、竹杆或其它带有绝缘柄 (手握绝缘柄) 的工具,迅速将电线挑开,不能使用任何金属棒或湿的东西去挑电线,以免 救护人触电。

警告

救护人不要直接接触触电人员, 否则救护人也可能触电!

2.5.7.2 触电伤员脱离电源后的处理

- 如果触电伤员神志清醒,应使其就地仰面躺开,严密监视,暂时不要站立或走动。
- 如果触点伤员神志不清,应使其就地仰面躺开,确保气道通畅,并以 5 秒的时间间隔呼叫伤员或轻拍其肩部,以判断伤员是否意识丧失。禁止摆动伤员头部呼叫伤员。就地抢救的同时尽快联系医院。
- 如果触电伤员意识丧失,应在 10 秒内判断伤员呼吸、心跳情况。若既无呼吸又无动脉搏动,可判定呼吸心跳已停止,应立即用心肺复苏法对其进行抢救。

2.6 作业人员及内容要求

2.6.1 作业人员定义

作业人员可分为以下三类:

● 操作人员

操作人员可进行机器人电源的开关,可通过示教器或其他界面启动机器人程序。

● 调试人员

调试人员可进行机器人操作,可进入安全防护区域内,可对机器人进行设置、示教、编程等操作。

● 维护人员

维护人员可进行机器人操作,可进入安全防护区域内,可对机器人进行设置、示教等操作,可对机器人进行调整、维修等操作。

警告

可进入安全防护区域内的调试、维护人员,必须提前接受并通过机器人的专业培训。

警告

在进行机器人操作、编程、维护时,作业人员必须注意安全,应根据实际情况,选择穿戴必要的物品进行作业,包括适合作业内容的工作服、安全鞋、安全帽等。

2.6.2 作业人员要求

2.6.2.1 操作人员要求

操作人员应满足如下条件:

● 操作人员的年龄应该在当地合法用工年龄范围内。

2 安全 DOC-00001793 / 2.0-A

● 操作人员应具备良好的身体条件。良好的身体条件包括:良好的视力(可佩戴眼镜或隐形眼镜)、良好的听力、良好的协调能力。操作人员在工作期间不能服用可能降低心智水平的物品(如药物、酒精、毒品等)。

● 理解当地适用的安全法规,如工作安全卫生法规、工伤事故预防法规等。

2.6.2.2 调试人员要求

调试人员应符合操作人员的标准,另外,调试人员还应满足如下条件:

- 调试人员应具备基本的技术知识,能理解机器人相关的技术文件和技术图纸,能按手册文件完成其工作任务。
- 调试人员需对机器人系统的使用非常熟悉,能根据实际需求通过操作机器人合理的实现目的。

2.6.2.3 维护人员要求

维护人员应符合操作人员的标准,另外,维护人员还应具备一定的其他专业知识(如电气、机械、气动等),能按手册文件完成其工作任务。

2.6.3 作业内容要求

2.6.3.1 安装、操作的安全要求

- 在搬运、安装机器人设备时,需按照本公司手册说明的方法进行,否则有可能由于错误操作导致机器人翻倒,进而导致作业人员伤亡或设备损坏。
- 机器人设备安装好后首次使用时,务必先以低速进行,然后逐渐加快速度,不可首次就使用高速运行。
- 程序和系统变量等信息默认保存在控制柜存储设备中,为了预防由于意外引起的数据丢失,建议用户定期进行数据备份。

2.6.3.2 调试的安全要求

调试时尽可能在安全防护区域外进行,当必须在安全防护区域内进行调试时,应着重注意下列事项:

- 仔细查看安全防护区域内的情况,确认没有危险再进入安全防护区域。
- 应确认安全防护区域内的所有调试人员的位置。
- 应在确认整个系统的状态后进行作业。
- 要做到随时都可以按下急停按钮。
- 应以低速运行机器人。

调试结束后,调试人员务必在安全防护区域外进行操作。

2.6.3.3 维护的安全要求

- 仔细查看安全防护区域内的情况,确认没有危险再进入安全防护区域。
- 应确认安全防护区域内的所有维护人员的位置。
- 当接通电源时,部分维护作业有触电的危险,应尽可能先断开机器人设备及系统电源,再

DOC-00001793 / 2.0-A 2 安全

进行维护作业。

- 维护作业时应避免其他人员无意中接通电源。
- 在进行作业时,不要将身体任何部位搭放在机器人设备的任何部分,以免造成不必要的人 身伤害或对设备造成不良影响。
- 进行维护作业时,应配备适当的照明器具。
- 如需更换部件,务必使用本公司指定部件。若使用指定部件以外的部件,有可能导致机器 人设备的损坏。
- 在更换部件时拆下来的零件(如螺钉),应正确装回其原来部位,如果发现零件不够或零件 有剩余,则应再次确认并正确安装。

2.7 安全培训

2.7.1 概述

现场操作人员、调试人员、维护人员必须经过正规的机器人安全及操作培训,并考核合格后,才能对机器人进行操作、调试和维护。禁止非专业人员、培训未合格的人员操作、调试或维护机器人,以免对作业人员和机器人设备造成严重损害。

设备的所有作业人员都应做到:

- 判断设备的当前状态,保证设备当前处于无故障的情况,才对机器人设备进行操作、调试 等作业。
- 当遇到紧急事件时,能选择最安全的方式处理,最大限度降低生命和财产损失。
- 充分理解本公司的产品手册文件,按文件的要求对设备进行作业。

2.7.2 作业人员的安全

下面列出一般性注意事项,请考虑采取以确保作业人员的安全:

- 在设备运行时,即使机器人看上去已经停止,也有可能是因为机器人在等待启动信号而处 在即将运行的状态。此状态也应该视为设备处在操作状态。
- 外围设备均应进行良好的接地。
- 应尽可能地将外围设备安装在机器人工作范围之外。
- 应采用在地板上画线等方式来标清机器人设备的动作范围。

2.7.2.1 操作人员的安全

操作人员不可进入安全防护区域内作业:

- 应在安全防护区域外进行机器人操作。
- 为了防止无关人员误入安全防护区域,应设置防护栏或安全门。
- 不需要操作机器人时,应断开电源,或者按下急停按钮。
- 应在操作人员伸手可及范围之内设置急停按钮。

2.7.2.2 调试人员的安全

2 安全 DOC-00001793 / 2.0-A

在进行调试作业时,某些情况下需要进入机器人的工作范围内,此时尤其要注意安全:

- 在进行调试作业之前,应确认设备处在安全状态。
- 应事先确认安全装置(如急停按钮)的位置和状态。
- 应特别注意, 勿使其他人员进入机器人工作范围内。
- 在机器人启动前,应充分确认机器人工作范围内没有人员。

在调试结束后,务必按照下列步骤执行测试运转:

- 在低速下, 单步执行程序至少一个循环, 确认没有异常。
- 在低速下,连续运行程序至少一个循环,确认没有异常。
- 在实际应用的运转速度下,连续运行程序至少一个循环,确认没有异常。

2.7.2.3 维护人员的安全

为了确保维修人员的安全, 应充分注意下列事项:

- 进行维修作业前,应确认外围设备处在安全状态。
- 进行维修作业前,应尽可能先断开设备电源。应根据需要先用锁等锁住主断路器,以避免 其他人员无意中接通电源。
- 当迫不得已必须要在通电的情况下进入机器人工作范围内时,应在按下急停按钮再进入。 维护人员应挂上"正在维修"的标牌,以避免其他人员无意中操作设备。
- 在机器人运动过程中, 切勿进入机器人的工作范围内。
- 当机器人工作范围内有其他人员时, 切勿执行自动程序运行。
- 进行维护作业时应在设备旁边配置一名熟悉机器人系统、能够察觉危险的人员,使其在紧急情况下可以按下急停按钮。
- 在更换部件或重新组装时,应注意避免异物粘附或者异物混入。
- 在检修机器人内部时,如要接触到电源单元、印刷电路板等时,为了预防触电,务必先断 开机器人的电源,再进行作业。

2.8 使用前评估

首次使用机器人或进行任何修改之后,必须进行以下测试。确认所有安全输入和输出是正确的,并且连接正确。测试所有连接的安全输入和输出是否功能正常。包含如下测试评估:

- 测试手持急停使能手柄/示教器的急停按钮是否可以停止机器人并启动抱闸。
- 测试操作模式是否可以手动、自动切换。
- 测试 3 档位手持急停使能手柄是否必须按下才能在手动模式下启动动作,并且机器人处于减速控制下。

DOC-00001793 / 2.0-A 3 产品概述

3 产品概述

3.1 简介

xMate SR3-C 是新一代柔性协作机器人,具备先进的力感知和控制能力,紧凑机身,轻量化设计以及多种通讯方式,可在机器人零售、机器人咖啡和机器人冰激凌等商用场景中应对自如。

3.2 机器人

3.2.1 概述

xMate SR3-C 机器人基本配置:

产品名称	最大负载	工作半径	本体重量
xMate SR3-C	3kg	705mm	13.8kg

3.2.2 机器人系统

xMate SR3-C 柔性协作机器人系统由机器人系统(本体及集成控制器)、手持安全设备、电源适配器及线缆、其他接口附件等组成,详见下图:

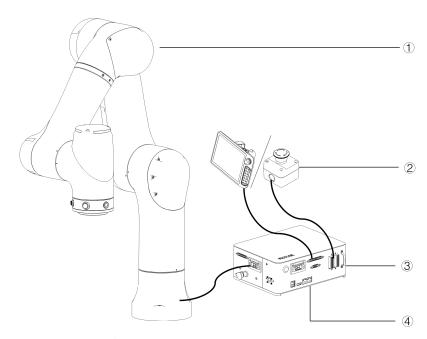


图 3-1 机器人系统

标号	名称
1	xMate SR3-C 机器人系统
2	急停按钮/示教器
3	控制柜及线缆
4	其他接口附件

3.2.3 转动方向与坐标系定义

柔性协作机器人本体共6个自由度,也称作6个关节、6个轴(见图 3-2 机器人各轴运动方向与坐标系定义),其各个轴转动方向与坐标系的定义如下:

基座标系: 底座出线方向为-X方向,垂直安装面向上为+Z,右手定则确定Y轴方向。

3 产品概述 DOC-00001793 / 2.0-A

法兰坐标系:机器人零位姿态下,零点位于法兰面盘中心,垂直法兰向外为+Z,X 轴方向与基坐标系 X 轴方向相同 。

旋转轴方向定义:各轴处于机械零位时,A1/A4/A6 旋转正向与基座标系+Z方向一致,A3/A5 旋转正向与基座标系-Y方向一致,A2 旋转正向与基座标系+Y方向一致。

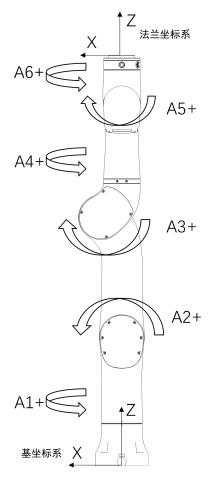


图 3-2 机器人各轴运动方向与坐标系定义

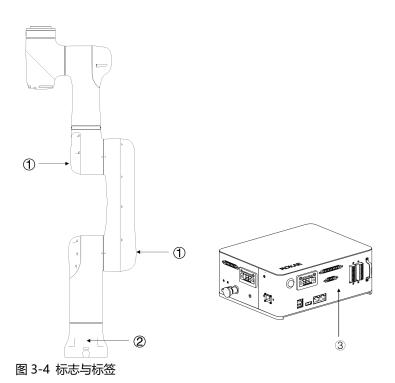
D0C-00001793 / 2.0-A 3 产品概述

3.3 机器人示教器概述

3.3.1 示教器概述

示教器是一个自带完整硬件和软件的嵌入式手持设备,您可以使用示教器来完成与机器人有 关的所有功能,例如编写和调试程序、查看系统状态、设置系统参数等等。

本机器人系统配备的示教器称为 xPad2,是一款精心设计的可靠易用的产品,熟练使用 xPad 将有效提高机器人的使用效率。


图 3-3 示教器

3.3.2 示教器构成

xPad2 示教器由以下几个部分构成:

- ▶ 触摸液晶屏
- ▶ 按键
- ▶ 按钮
- ▶ USB接口等

3.4 标志和标签

3 产品概述 DOC-00001793 / 2.0-A

位置	标签类型	备注
1	本体 LOGO	
2	产品铭牌	标明产品型号等产品信息
3	小心触电标识	请勿在带电状态下触碰机器人内电气 部件,否则可能导致触电事故

D0C-00001793 / 2.0-A 4 技术规格

4 技术规格

4.1 简介

本节主要介绍 xMate SR3-C 柔性协作机器人产品的各项性能参数

4.2 机型型号说明

机型编码对应的含义如图 4-1 所示。

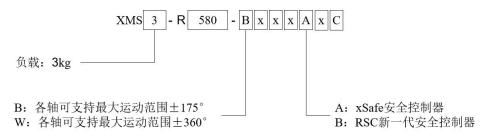


图 4-1 xMate SR3 机型型号说明

4.3 技术参数

4.3.1 本体参数

下表参数适用于机型: XMS3-R580-BxxxAxC

产品名称		xMate SR3-C
轴数		6
工作半径		705mm
重复定	位精度	±0.03mm
最大总负	负载能力	3kg
	轴 1	±175°
	轴 2	-155°到 140°
\ 	轴 3	-175°到 135°
运动范围	轴 4	±175°
	轴 5	±175°
	轴 6	±175°
	轴 1	180°/s
	轴 2	180°/s
目上注於	轴 3	180°/s
最大速度	轴 4	180°/s
	轴 5	180°/s
	轴 6	180°/s
工作	温度	0°C∼+50°C
储藏温度		-10°C~+55°C
湿度		0%~93%相对湿度, 非凝结
防护等级		IP54
安装方式		任意角度安装
本体重量		13.8kg
噪音水平		≤70dB(A)

4 技术规格 DOC-00001793 / 2.0-A

下表参数适用于机型: XMS3-R580-WxxxBxC

产品名称		xMate SR3-C
轴	数	6
工作半径		705mm
重复定		±0.03mm
最大总统	0载能力	3kg
	轴 1	±360°
	轴 2	-155°到 140°
\=- 1,* =	轴 3	-175°到 135°
运动范围	轴 4	±360°
	轴 5	±360°
	轴 6	±360°
	轴 1	180°/s
	轴 2	180°/s
自十冲中	轴 3	180°/s
最大速度	轴 4	180°/s
	轴 5	180°/s
	轴 6	180°/s
工作温度		0°C~+50°C
储藏温度		-10°C~+55°C
湿度		0%~93%相对湿度,非凝结
防护等级		IP54
安装方式		任意角度安装
本体重量		13.8kg
噪音水平		≤70dB(A)

4.3.2 控制柜参数

产品名称		LightCab
标准控制轴数		6
安装方式		落地式
	噪音	≤70dB(A)
	防护等级	IP20
	中海	48VDC
	电源	电压波动范围不超过-10%~+10%
电气连接	额定功率及电流	峰值功率:500W
		峰值电流:10A
		平均功率:160W
工作环境温度		0°C∼+50°C
储存温度		-10°C~+55°C
工作/储存最大环境湿度		≤93%,无凝露,无结霜
		室内安装,避免烈日照射
	工作环境	远离灰尘油烟盐分铁屑等
		远离易燃性、腐蚀性液体与气体

D0C-00001793 / 2.0-A 4 技术规格

		防止各方向飞溅的水侵入 不传递冲击与振动 远离电气干扰源 海拔 1000m 以下	
	外形尺寸	长 228.5mm*宽 180mm*高 88mm	
物理特性	重量	约 2.4Kg(驱动器配置不同重量略有差异)	
	柜体颜色	白色	
	输入输出 (PNP、NPN)	标准 4/4,可扩展至 132/132	
	现场总线标配	EtherCAT	
		以太网 (百兆)	
 用户接口		USB	
用广致口		Modbus TCP	
		Ethernet/IP	
	现场总线选配	Profinet	
		CC-Link	
	对外输出直流电源	输出电压: DC48V	

4.3.3 示教器参数 (示教器为选配)

产品名称		xPad2 示教器	
屏幕尺寸		10.1 英寸	
	屏幕分辨率	1920*1200	
	外形尺寸	290×170×80mm3	
重量		840g (不含线缆)	
仅线缆最小弯折半径		77mm	
防护等级		IP54	
外部接口		USB 3.0	
线缆长度		可选配 5/7/10/15/22/30 米	
	工作环境温度	0°C ~ +45°C	
环境	储存温度	-25℃~ +55℃	
	工作/储存最大环境湿度	≤90%,无凝露,无结霜	

4.4 工作空间

xMate SR3-C 工作空间图——手腕参考点(4 轴与 5 轴轴线的交点)掠过的空间,如下图所示:

4 技术规格 DOC-00001793 / 2.0-A

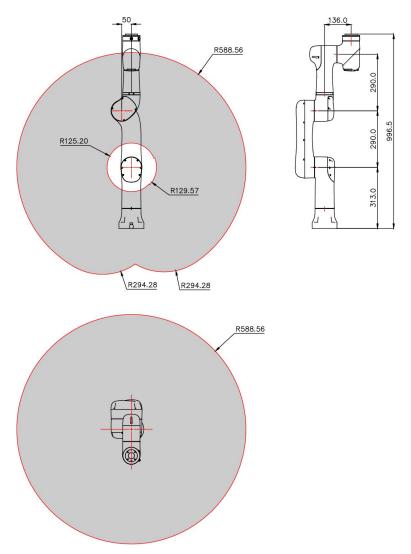


图 4-2 xMate SR3-C 工作空间图

4.5 允许载荷

警告

始终定义正确的实际载荷数据并校正机器人的有效载荷非常重要。载荷数据定义不正确可能会导致机器人过载。

如果使用不正确的载荷数据和/或载荷图中以外的载荷,则以下部件可能会因过载而受损:

- 电机
- 减速器
- 机械结构

警告

机器人上安装的所有负载包括末端工装夹具和工件等的总重量应当小于机器人的最大有效负载。

使用不正确的载荷数据和/或载荷图中以外的载荷运行的机器人将不在机器人保修范围内。

4.5.1 手腕允许力矩和惯量

为充分发挥机器人的性能,避免超载引起的机器人故障、损伤,机器人安装的有效负载不允

DOC-00001793 / 2.0-A 4 技术规格

许超过允许力矩和允许惯量。

xMate SR3-C 允许力矩和允许惯量如下表:

轴	允许力矩 Nm	允许惯量 kg·m2
轴 4	7.3	0.33
轴 5	7.3	0.33
轴 6	3.6	0.1

警告

有效负载的参数均应不超过允许力矩和允许惯量!

请务必根据机器人带载能力匹配负载,超过机器人带载能力的负载会引起机器人报警甚至损坏机器人部件,缩短机器人寿命。

4.5.2 手腕最大允许负载曲线

负载重心的位置由负载中心距离法兰面的距离确定, Lxy 表示负载中心与 A6 轴线之间的距离, Lz 表示负载中心与输出法兰安装面之间的距离。各负载对应的距离见手腕负载曲线图:

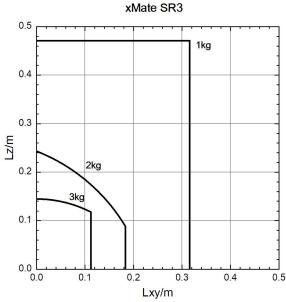


图 4-3 手腕最大允许负载与重心偏移关系图

警告

计算负载重量时,必须将执行器重量一并计入并确保符合机器人负载规格。确保系统决不 超过最大容许负载。

4.5.3 负载惯量的计算

为了确保获得最佳的机器人性能,就要明确负载(末端执行器和工件的重量)和负载惯量在机器人的最大允许值之内,在机器人末端安装执行机构进行动作时,必须考虑执行机构的惯性矩。xMate SR3-C 机器人可接受的允许最大惯量见 4.4.1,使用前请务必计算负载的转动惯量,并保证在允许范围内使用。

提示

一般情况下,在有准确的三维模型时,负载的质量、质心以及惯量信息可以在三维 CAD 软件中快速获取!

4 技术规格 DOC-00001793 / 2.0-A

4.5.4 关节力矩限额

在协作应用中,在风险分析中必须考虑关节扭矩,下表显示了每个关节的力矩限额,使用时需在力矩限额内使用,超过限额的使用可能会导致机器人过载而受损。

轴	关节力矩限额 Nm
1	60
2	60
3	60
4	19
5	19
6	19

D0C-00001793 / 2.0-A 5 开箱与安装

5 开箱与安装

5.1 简介

本章主要介绍收到 xMate SR3-C 柔性协作机器人后的开箱与安装所需注意的相关信息。

5.2 安装流程表

安装流程表用于检查机器人安装进度,每个操作步骤结束后,在"完成"一览中打勾

步骤	操作 完成			
1.机器人安装	袋前的准备 			
1	安装人员			
2	安装环境			
3	安装地基			
4	支撑柱			
2.机器人安	· 大只才			
3.开箱与搬运	<u> </u>			
1	开箱			
2	核对装箱清单			
3	搬运			
4.安装机器	人本体			
1	将机器人固定在安装位			
5.线缆连接				
1	连接机器人本体与控制柜之间的供电及信号线缆			
6.用户配线/管				
1	连接 I/O 信号线缆和气管			

5.3 环境条件

机器人适用于普通工业环境,其使用环境需符合下述条件:

项目	条件
温度	0°C~+50°C
相对湿度	0%~93%相对湿度,非凝结
脉冲群干扰 (EFT)	±2kV 以下
静电干扰 (ESD)	±8kV以下
	室内安装。
	避免阳光照射。
	远离灰尘、油烟、盐分、铁屑等。
环境	远离易燃性、腐蚀性液体与气体。
	不得与水接触。
	不传递冲击与振动。
	远离电气干扰源。

警告

机器人不得置于或在爆炸性环境中使用!

5 开箱与安装 DOC-00001793 / 2.0-A

提示

在环境温度较低 (<10℃) 的情况下,减速器(或齿轮箱)内的润滑脂(或润滑油)粘度较高,可能会导致机器人停机或低效运行,此时推荐机器人与其他配套设备一起进行预热。

机器人的储存环境应符合下述条件:

项目	条件
温度	-10°~+55°
相对湿度	0%~93%相对湿度,非凝结

5.4 开箱与硬件安装

5.4.1 开箱

开箱准备

请按照下表准备开箱所需工具

序号	工具	数量
1	美工刀/剪刀	1
2	M6 内六角扳手	1
3	防护手套	1

开箱步骤:

(1) 步骤 1: 拆外包装纸箱

戴上防护手套,用剪刀或美工刀划开包装密封,打开包装后可看到纸箱内部有:

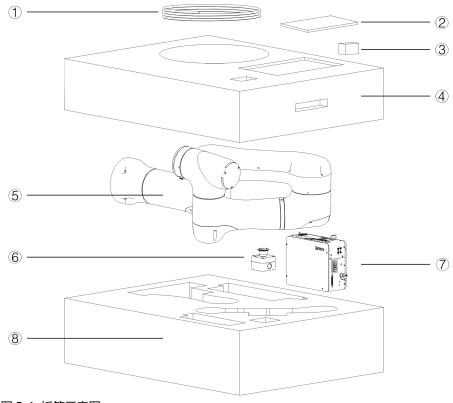


图 5-1 拆箱示意图

标号	内容	数量	备注	
	工具 IO 客用线束	1	连接末端工具 IO,黑色线束	
1			绿色线束,一端为 RJ45 转接头。	
'	伺服调试线 (选配)	1	正常工作无需使用,请妥善收	
			藏,仅供厂家调试。	
2	U盘	1		
3	xMate SR3-C 硬件安装手	1	II 舟中乙立 <u></u> 从转伏	
3	M	ı	U 盘电子文件替代	
4	上内衬	1		
5	xMate SR3-C	1		
6	急停开关	1	配有线缆	
7	控制柜	1		
8	下内衬	1		

(2) 步骤二: 依序取出箱内各部件

上述零散配件需注意保管,电源适配器以及线缆等配件注意轻拿轻放

警告

机器人本体安装到指定位置之前的所有拆箱后运输过程,务必连带上下内衬一同运输,运输过程中注意保持平衡,防止倾翻,只有在机器人本体安装固定前才可将机器人本体从内衬中取出。

5.4.2 机器人运输角度与搬运部位

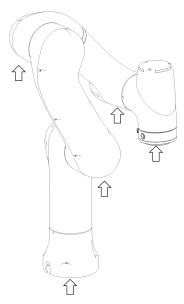


图 5-2 包装运输姿态与建议受力位置

A1	A2	A3	A4	A5	A6
0°	-30°	-165°	174.8°	45°	90°

警告

图示箭头位置和方向表示,机器人在包装运输姿态下的建议受力位置和方向,强烈不建议您通过其他位置受力来运输机器人,不当的操作和着力点可能会对机器人造成损伤!

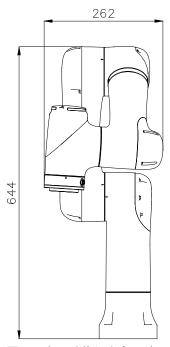
5 开箱与安装 DOC-00001793 / 2.0-A

5.4.3 安装前检查

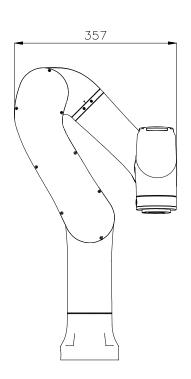
安装操作机器人的安装人员必须具备机械和电子设备安装/维护/维修工作所需的知识,并遵守所有国家和地区相关规范。

检查安装的先决条件

序号	操作
1	目测检查机器人,确保未受损伤
2	确保机器人预期的操作环境符合此节描述:
3	确保安装现场符合条件:
4	如果未直接安装,则确保现场符合环境要求:
5	满足以上先决条件后,即可按照下一节内容安装机器人:


5.5 现场安装

5.5.1 搬运


5.5.1.1 倾斜风险

若机器人处于未固定在任何基座上并保持静止的状态,务必保证机器人处于包装下内衬之中,此时机器人不稳定,任何移动操作均可能造成机器人重心偏移或倾斜,甚至导致倾翻。

5.5.1.2 搬运尺寸

5.5.2 安装机器人

5.5.2.1 固定所需零件

零部件名称	详述	支架安装
内六角圆柱头螺钉	4-M6x30 (12.9级)	✓
安装支座	安装板厚度至少 25mm	✓

注释:

1. 机器人固定板及安装支座与操作机、混凝土之间不得有绝缘层物质;

D0C-00001793 / 2.0-A 5 开箱与安装

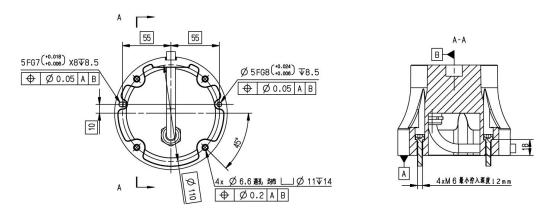
- 2. "✔" 表示此种安装方式需要;
- 3. 安装支架的固定强度不得低于地基安装时机器人固定板与地基的固定强度。

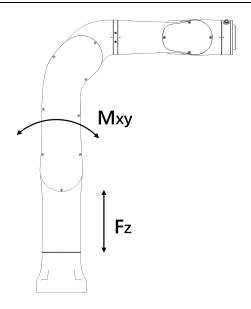
5.5.2.2 支架安装

固定方式及具体参数如下:为保证定位准确可在预留的圆柱销孔中使用销钉定位,随后用 4 个 M6 X30 的内六角圆柱头螺栓 (强度等级 12.9 级)将机器人底座固定在支架上。

警告

注意底座的安装螺栓必须使用 15.6Nm 的扭矩拧紧,确保机器人正确且安全地安装到位,任何不稳定的安装都可能导致事故发生!




图 5-4 支架固定方式参考

5.5.2.3 机器人支反力

机器人安装后,其安装底座会由于机器人的静力以及动力产生较大支反力,如下图,机器人底座必须能够承受该支反力。

名称	解释
Fxy/N	XY 平面中任意方向上的力
Fz/N	Z 平面中的力
Mxy/Nm	XY 平面中任意方向上的弯曲转矩
Mz/Nm	Z 平面上的弯曲转矩

5 开箱与安装 DOC-00001793 / 2.0-A

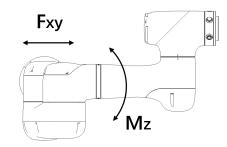


图 5-5 机器人支反力图

カ	SR3-C 最大值
Fxy/N	400
Fz/N	547
Mxy/Nm	91
Mz/Nm	94

提示

以上力和转矩的数据是机器人在运动过程中出现的极限数值,很少情况会出现, 且以上数值无法同时达到最大。

5.5.3 法兰

为了准确的定位工具,请使用预留的Φ6 销孔准确定位。机器人末端法兰有 4 个 M6 螺纹孔,可用于将工具连接到机器人法兰上,M6 螺栓必须使用 15.6Nm 的扭矩拧紧,具体尺寸参考下图所示:

DOC-00001793 / 2.0-A 5 开箱与安装

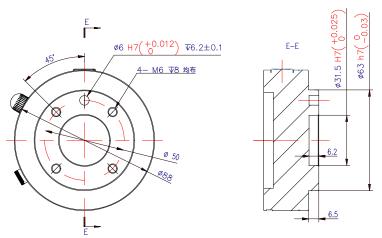
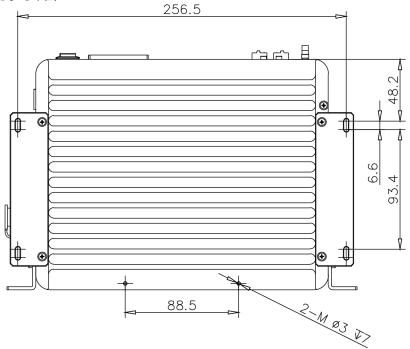


图 5-6 工具法兰安装



警告

- 确保工具正确且安全的安装到位,注意安装工具的活动范围是否影响到机器人的活动 空间;
- 确保安装工具的 M6 螺钉不要超过图示的螺纹长度,避免造成不可修复的损伤;
- 确保工具安全,不存在有零件的意外脱落造成危险。

5.5.4 安装控制柜

控制柜支持卧式和立式安装,安装面每侧至少留出 50mm 空隙,保证足够的散热空间,控制柜整体尺寸参考下图:

5 开箱与安装 DOC-00001793 / 2.0-A

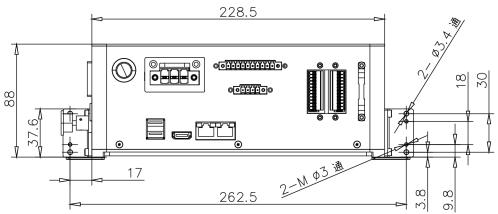


图 5-7 卧式安装

談安た個

将卧式安装板安装在控制柜底部对应位置,将控制柜横置与平整稳定的安装面上,使用 4 颗 M3*8 的螺钉,通过卧式安装板上的腰型孔,将控制柜固定在安装面上。

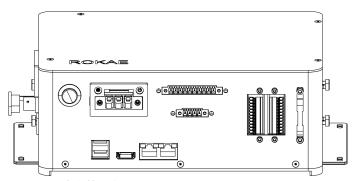


图 5-8 卧式安装示意图

立式安装

将立式安装板安装在控制柜的两侧,将控制柜立置于平整且稳固的安装面,使用 4 颗 M3*8 的螺钉通过立式安装板上的螺钉间隙孔,将控制柜固定在安装面上。

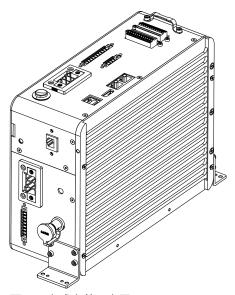


图 5-9 立式安装示意图

DOC-00001793 / 2.0-A 5 开箱与安装

5.5.5 示教器安装 (示教器为选配)

针对选配有示教器转接线套件的用户,此章节对示教器转接线套件安装方法进行说明。

5.5.5.1 安装所需零件及工具

安装所需物料及工具如下表所示,其中,物料部分为示教器转接线套件中所包含的物料。工具部分为安装示教器转接线套件所需的工具。

类型	序号	零部件名称	规格	数量
	1	示教器转接线	/	1
#/m\v\	2	内六角圆柱头螺钉	M3X8	2
物料	3	示教器固定钣金	/	1
	4	耐高温尼龙扎带	/	1
	1	十字螺丝刀	PH 1	1
工具	2	内六角扳手	2.5	1
	3	活动口扳手	10寸	1

5.5.5.2 安装步骤

(1) 用十字螺丝刀将控制柜顶部右侧两颗螺钉卸掉。

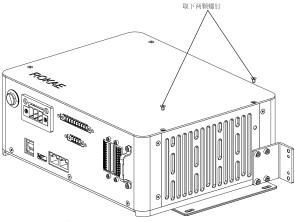


图 5-10 拆卸螺钉

(2) 用内六角扳手将两颗 M3X8 的螺钉连同示教器固定钣金,固定在拆掉的螺钉的的两个 孔处处如下图所示

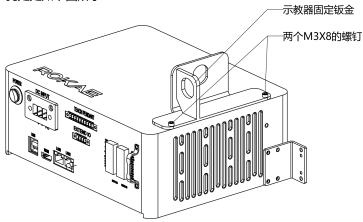


图 5-11 安装示教器固定钣金

- (3) 将示教器转接线接头穿过钣金,并用用活动扳手将示教器转接头的螺母拧紧,使示教器接头固定在钣金上面。如下图 5-12 所示。
- (4) 教器转接线的 xPad 接头和 RJ45 接头分别与控制柜的 TEACH PENDANT 接口 (原

5 开箱与安装 DOC-00001793 / 2.0-A

xPad 接口)和 LAN2接口对插(注意接口,请勿插错),并用扎带将插头附件的线束固定在控制柜 IO 接口旁的绑线钣金处,最终效果参考图 5-12。

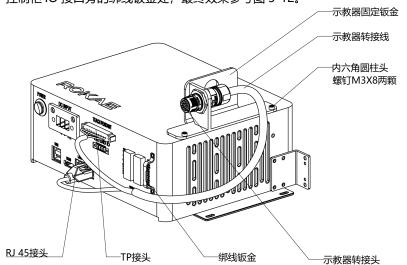


图 5-12 安装示教器转接线束

(5) 将示教器上的线缆接头,与图 5-12 所示的示教器转接头对插并锁紧,即可正常使用示教器。示教器连接示意图如下图所示。

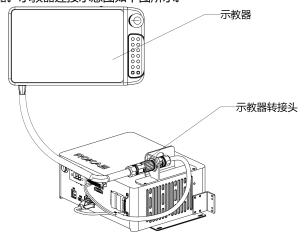


图 5-13 示教器连接示意图

此套方案只针对选配有示教器转接线套件的用户使用。其中示教器转接插头提供两种安装方式,分别为朝前和朝左两种安装方式。图 5-12 展示的为朝前安装方式,也是示教器转接线套件的默认安装方式。朝左安装方式参考图 5-14。

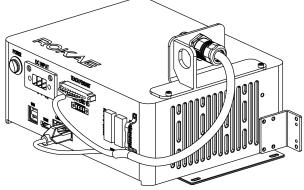


图 5-14示教器固定钣金朝左安装示意图

6 电气连接

6.1 电气布局

本章描述了 xMate SR3-C 本体及相关设备的所有电气接口及操作接口使用。XMate SR3-C 机器人配置了急停按钮,集成商可选配电源适配器用于机器人控制柜供电,配置的网络接口可将机器人连接到外部网络,或通过装有 xMate SR3-C 运行软件的 Pad 设备、PC 设备等对机器人本体进行相应控制和调试。

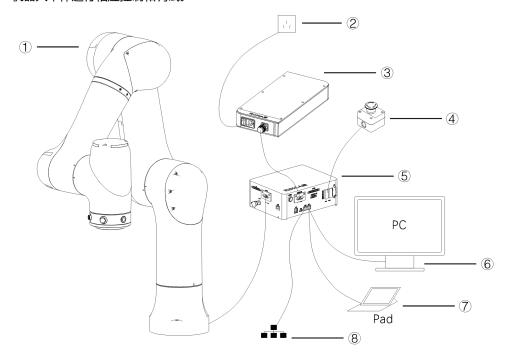


图 6-1 电气布局图

标号	名称
1	xMate SR3-C 本体
2	外部电源
3	电源适配器 (选配)
4	急停按钮/示教器
5	控制柜
6	PC 设备
7	Pad 设备
8	外部网络

提示

对 xMate SR3-C 机器人的控制和使用请参考机器人运行软件使用手册。

6.2 控制柜接口

本节介绍机器人控制柜的所有进出线接口。

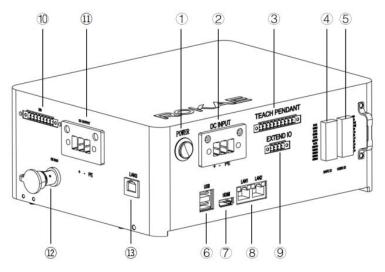


图 6-2 控制柜接口图

标号	含义	标记
1	上电按钮 (带指示灯)	POWER
2	DC48V 电源输入	DC INPUT
3	xPad 示教器接口	TEACH PENDANT
4	安全 DIO	SAFE IO
5	通用 DIO	USER IO
6	USB接口 (暂未启用)	USB
7	HDMI 接口(暂未启用)	HDMI
8	EtherNet □	LAN1、LAN2
9	扩展 DIO	EXTEND IO
10	Ethercat/STO 输出	E/S
11	DC48V 电源输出	DC OUTPUT
12	伺服调试口	DEBUG
13	Ethercat 扩展口	LAN3

6.2.1 控制柜电源输入

控制柜电源输入接口为凤凰端插座(针式)7.62 间距-3P,可选配带专用插头(孔式)的适配器给控制柜供电。控制柜输入电源的电气规格如下表所示:

参数	最小值	典型值	最大值	单位
输入电压范围	43.2	48	52.8	VDC

参数	待机功率	典型功率	峰值功率	单位
功率	60	160	500	W

使用自备电源给本体供电时,自备电源的输出电压需介于最小值和最大值之间,其功率应大于峰值功率。

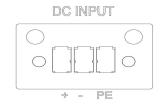


图 6-3 供电接口 (线缆侧视图)

6.2.2 控制柜上电

控制柜上电按钮为控制柜电源输入的主控制开关,内部 24VDC 供电,为平头带灯自锁按钮,控制机器人通电的同时显示本体的通电状态。

按钮状态 (自锁定)	指示灯状态	本体状态
未按下	灭	未通电
按下	绿色常亮	已通电

6.2.3 示教器接口

控制柜上的 TEACH PENDANT 接口为机器人的 Xpad 示教器接口,适配专用 Xpad2 示教器,可实现对机器人的示教等功能。

图 6-4 TEACH PENDANT接口

6.2.4 扩展 IO 接口

控制柜上的 EXTEND IO 接口为扩展 IO 接口,可扩展为多路 DIDO 接口。

图 6-5 EXTEND IO 接口

6.2.5 通用 DIDO(普通版本)

本章节内容适用于机型型号: XMS3-R580-xxxxAxC

xMateSR3-C 有四路数字输入和四路数字输出通道,集中控制柜 USER IO 接口上,用户使用 DIO 功能时须使用带有 E0308 针式冷压接线端子的连接线连接相应通道。

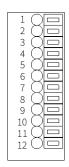


图 6-6 通用 DIO 接口

点位	定义
1	24V+
2	GND
3	DI_COM
4	DO_COM
5	DI_00
6	DO_00
7	DI_01
8	DO_01
9	DI_02
10	DO_02
11	DI_03
12	DO_03

6.2.5.1 通用 DI

数字输入可配置成 PNP 和 NPN 两种模式,两种模式支持用户端输入的电气规格:

	最小值	典型值	最大值	单位
输入电压范围	21	24	27	V

配置为不同模式的具体使用方法分别如下:

PNP 输入

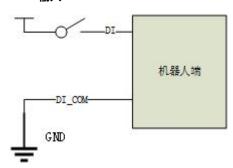


图 6-7 PNP 输入接线示意图

NPN 输入

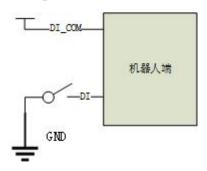


图 6-8 NPN 输入接线示意图

6.2.5.2 通用 DO

数字输出可配置成 PNP 和 NPN 两种模式,两种模式支持用户端输出的电气参数规格:

	最小值	典型值	最大值	单位
负载电压范围	0	24	30	V

持续负载电流 0		300	mA	
----------	--	-----	----	--

若持续负载电流超过最大值, 需要使用额外的继电器进行驱动。

配置为不同模式的具体使用方法分别如下:

NPN 输出

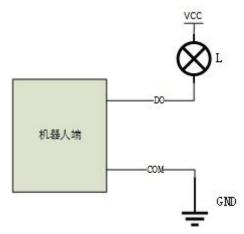


图 6-9 NPN 输出接线示意图

PNP 输出

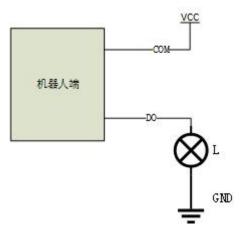


图 6-10 PNP 输出接线示意图

6.2.6 安全 DIO(普通版本)

本章节内容适用于机型型号: XMS3-R580-xxxxAxC

xMateSR3-C 具备外部急停、防护停止(如安全门)专用安全输入和安全状态反馈专用安全输出,各通道集中在控制柜 SAFE IO 接口上,使用该安全 DIO 功能时须使用带有 E0308 针式冷压接线端子的连接线连接相应通道。

所有安全 DIO 都是成对冗余的,使用时必须保证是两个独立的分支,单个分支的故障不会导致相应安全功能失效。

点位	定义
1	SGATE1+
2	SGATE1-
3	SGATE2+
4	SGATE2-
5	EXSTOP1+

6	EXSTOP1-
7	EXSTOP2+
8	EXSTOP2-
9	UR_STOP_STATE_00_A
10	UR_STOP_STATE_00_B
11	UR_STOP_STATE_01_A
12	UR_STOP_STATE_01_B

6.2.6.1 安全 DI

安全 DI 接口示意图

图 6-11 外部急停接口示意图

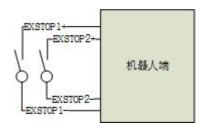


图 6-12 安全门接口示意图

	外部急停	防护停止 (安全门)
作用	仅用于紧急停止设备	用于其他安全型保护设备
机器人状态	停止运动	停止运动
程序执行	暂停	暂停
驱动电源	关[1]	关[1]
使用频率	不常使用	不常使用

警告

安全型 I/O 均具备冗余性 (两个独立通道)。保持两个通道独立,可确保在发生单一通道故障时不会丧失安全功能。

在将机器人投入使用前,务必检验安全功能。必须定期测试安全功能。 机器人的安装需遵循这些规格。如果不遵循这些规格,有可能会造成严 重的人员伤亡,因为安全功能有可能失效!

默认安全配置:

每一个安全功能输入或状态输出信号均为双路控制,外部急停及防护停止外接急停开关,接线图如下图所示,出厂时默认是未接的。

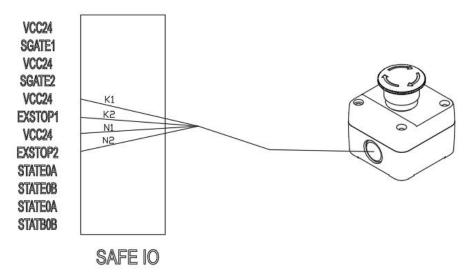


图 6-13 急停开关接线示意图

机器人出厂为默认的安全配置,集成商可根据现场安全设备的配备情况将安全设备接入到安全 DIO 中。

6.2.6.2 安全 DO

安全 DO 共有 2 路,对外部急停设备安全输入的状态反馈,发生外部急停时,两路反馈各自的 A、B 之间反馈为断开状态,未发生外部急停时为短路状态。

6.2.7 通用 DIDO(RSC 版本)

本章节内容适用于机型型号: XMS3-R580-xxxxBxC

xMateSR3-C 有四路数字输入和四路数字输出通道,集中控制柜 USER IO 接口上,用户使用 DIO 功能时须使用带有 E0308 针式冷压接线端子的连接线连接相应通道。

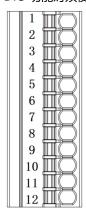


图 6-14 通用 DIO 接口

点位	定义
1	24V+
2	GND
3	DI_COM
4	DO_COM

5	DI_00
6	DO_00
7	DI_01
8	DO_01
9	DI_02
10	DO_02
11	DI_03
12	DO_03

● 通用数字输入接口说明

4 路数字输入支持漏型、源型输入,输入高电平有效 (漏型),接 PNP 型电平信号;输入低电平有效时 (源型),接 NPN 型电平信号:

5113783 (m.2)/13234 2 51 h 51	
项目	参数
输入电压范围	0VDC~28VDC
开启电压	公共端 0VDC:高输入,15VDC~28VDC 公共端 24VDC:低输入,0VDC~10VDC
关闭电压	公共端 0VDC:高输入,0VDC~5VDC 公共端 24VDC:低输入,19VDC~24VDC
输入阻抗	7.5kΩ

配置为不同模式的电气原理分别如下:

公共端接 OVDC,接 PNP 输入信号,参考下图。

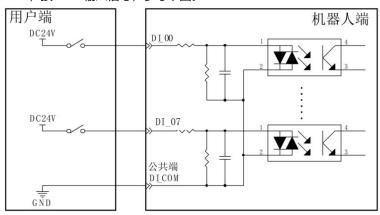


图 6-15 电气原理图

公共端接 24VDC,接 NPN 输入信号,可参考下图。

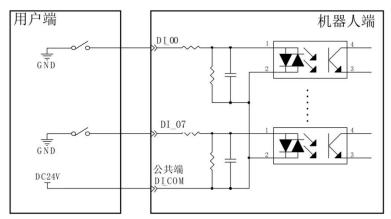


图 6-16 电气原理图

- 通用数字输出接口说明
- 4 路数字输出支持漏型、源型输出,可配置成输出高电平有效、输出低电平有效,输出的电气参数规格:

> XX/901H ·	
项目	参数
负载电压范围	≤ 28VDC
额定负载电流	最大值:300mA(持续负载电流不能超过最大值)
输出阻抗	≤ 2.5Ω
漏电流	最大值 5uA

配置为不同模式的电气原理分别如下:

输出低电平有效,将 DO_COM (公共端)连接到 0VDC,参考下图。

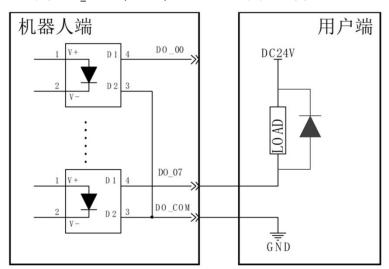


图 6-17 电气原理图

输出高电平有效,将 DO_COM (公共端)连接到 24VDC,参考下图。

图 6-18 电气原理图

提示

强烈建议在感性负载的两端并联一个续流二极管!

6.2.8 安全 DIO(RSC 版本)

本章节内容适用于机型型号: XMS3-R580-xxxxBxC

xMateSR3-C 具备外部急停、防护停止(如安全门)专用安全输入和安全状态反馈专用安全输出,各通道集中在控制柜 SAFE IO 接口上,使用该安全 DIO 功能时须使用带有 E0308 针式冷压接线端子的连接线连接相应通道。

所有安全 DIO 都是成对冗余的,使用时必须保证是两个独立的分支,单个分支的故障不会导致相应安全功能失效。

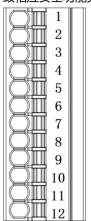


图 6-19 安全 IO

点位	定义
1	安全门 AP
2	安全门 AN
3	安全门 BP

4	安全门 BN
5	外部急停 AP
6	外部急停 AN
7	外部急停 BP
8	外部急停 BN
9	安全输出 AP
10	安全输出 AN
11	安全输出 BP
12	安全输出 BN

6.2.8.1 安全 DI

● 安全输入回路的接口说明

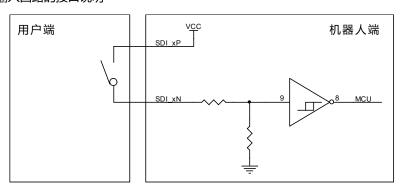


图 6-20 电气原理图

两个回路的电路原理相同,支持 24VDC 信号。

接线时,安全信号 AP 与 AN,BP 与 BN 同时短路代表安全输入有效,AP 与 AN,BP 与 BN 同时断路代表安全输入无效,其他状态为异常状态。

项目	参数
输入电流	≤50mA 每回路
导线电阻	≤15Ω每回路
数量	2组

	外部急停	防护停止 (安全门)
作用	仅用于紧急停止设备	用于其他安全型保护设备
机器人状态	停止运动	停止运动
程序执行	暂停	暂停
驱动电源	关[1]	关[1]
使用频率	不常使用	不常使用

警告

- 安全型 I/O 均具备冗余性 (两个独立通道)。保持两个通道独立,可确保在发生单一通道故障时不会丧失安全功能。
- 在将机器人投入使用前,务必检验安全功能。必须定期测试安全功

能。

机器人的安装需遵循这些规格。如果不遵循这些规格,有可能会造成严重的人员伤亡,因为安全功能有可能失效!

默认安全配置:

每一个安全功能输入或状态输出信号均为双路控制,外部急停及防护停止出厂时已短接,可在没有任何附加安全设备的条件下操作。



图 6-21 短接线示意图

机器人出厂为默认的安全配置,集成商可根据现场安全设备的配备情况将安全设备接入到安全 DIO 中。

6.2.8.2 安全 DO

● 安全输出回路的接口说明

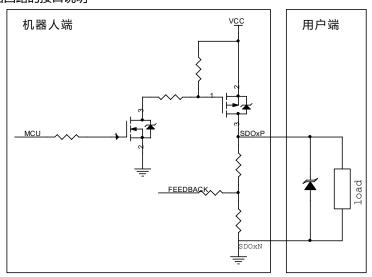


图 6-22 电气原理图

提示

强烈建议在感性负载的两端并联一个续流二极管!

安全输出回路采用 MOSFET 输出,并对 MOSFET 的电压进行回采集,两个回路的电路原理相同,支持 24VDC 信号。当输出信号有效时,SDOxP 和 SDOxN 之间产生 24VDC 电压。

项目	参数
类型	半导体输出
电压范围	高电平: 20V ~ 30VDC,低电平: -5V ~ +5VDC
驱动电流	100mA 每回路通道
数量	1组

6.2.9 扩展 EtherNet 口

LAN1 和 LAN2 为标准 RJ45 接口,使用标准网线对接,支持 EtherNet 通讯,最大通讯速率 1000Mbps,可将 xMate SR3-C 机器人连接到安装有 xMate SR3-C 操作软件的网络设备中。

6.2.10 Ethercat 扩展口

LAN3 是 Ethercat 扩展口为标准 RJ45 接口,使用标准网线对接。

6.2.11 USB接口 (未启用)

控制柜上提供 2 路标准的 USB3.0 接口,如图所示,暂未启用。

图 6-23 USB 接口

6.2.12 HDMI 接口 (未启用)

控制柜上提供 1 路标准的 HDMI 接口,如图 28 所示,暂未启用。

图 6-24 HDMI 接口

6.2.13 EtherCAT 伺服驱动调试口

DEBUG 接口是 M12 圆形连接器,使用专用扩展线,可对伺服参数设置及状态监控,此功能仅对内部专业调试人员开放。

图 6-25 调试接口

6.2.14 把手功能按键及接口

机器人末端配备了百兆网线接口、末端 IO 接口、示教拖动按钮功能,功能按键如下图表所

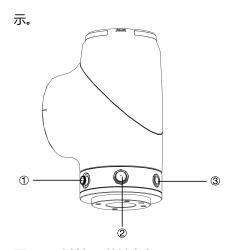


图 6-26 末端把手按键定义

序号	含义
1	末端百兆网线口 (选配)
2	末端 IO 接口
3	拖动按钮开关

6.2.14.1 末端百兆网线接口 (选配)

在机器人的末端把手的工具法兰旁边配备了 1 个圆形连接器,连接底座百兆以太网,可对安装于机器人末端的执行器提供百兆以太网接口。需要搭配此连接器使用 SA810/P6S-威浦。

图 6-27 百兆网口定义

引脚定义如下:

标号	定义
1	TX+
2	TX-
3	RX+
4	RX-
5	+5V
6	GND

6.2.14.2 拖动按钮开关

在机器人的末端把手的工具法兰旁边配备了1个自复位按钮,按键按下开启拖动功能。

6.2.14.3 末端 IO 接口

在机器人的末端把手的工具法兰旁边配备了 1 个圆形连接器,可对安装于机器人末端的执行器提供相应电气扩展接口,该接口可选配 xMate SR3-C 机器人专用手抓作为末端执行器,可搭配客用连接器 M8-FS-8CON-PVC-2 .0 使用。

6 电气连接

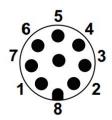


图 6-28 末端圆形连接器接口定义

标号	颜色	定义
1	白	DI_0
2	棕	DI_1
3	绿	DO_0
4	黄	DO_1
5	灰	AI_0
6	粉	AI_1
7	蓝	0V/+12V/+24V(电源)
8	红	GND

6.2.14.4 专用工具 IO

xMate SR3-C 机器人可选配专用的夹爪作为末端执行器,夹爪电气和专用通信接口直接集成在此连接器中。

6.2.14.5 一般工具 IO

集成商在此机器人工具上使用夹持器和传感器时,连接器可提供电源和控制信号。 工具电源的电气规格如下:

	最小值	典型值	最大值	单位
工具电源电压	0	12/24	24.8	V
工具电源电流	0	1	2	Α

注意

1. 工具电源的电流最大值 2A 为峰值,峰值时间不超过 1s

工具数字输出:

机器人提供 2 路工具数字输出,数字输出可进行 NPN 和 PNP 模式配置,用户端工具数字输出接入负载的电气原理示意如下图所示:

NPN 模式	默认状态	激活状态	最大值	单位
输出电平	悬空	低		
持续负载电流	0		100	mA

PNP 模式	默认状态	激活状态	最大值	单位
输出电平	悬空	V_OUT		
持续负载电流	0		100	mA

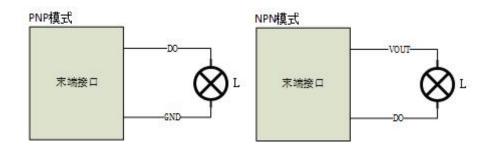


图 6-29 末端输出接口示意图

注意

工具中的数字输出端没有电流限制保护。若超过所规定的数据,可能会导致永久性损坏。

工具数字输入:

机器人提供 2 路工具数字输入, 支持 NPN 和 PNP 模式, 电气原理如下图所示:

	默认状态	激活状态	最大值	单位
输入电平	悬空	低或高		
持续负载电流	0		100	mA

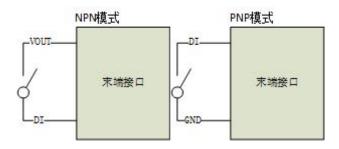


图 6-30 末端输入接口示意图

6.3 模拟输入

末端包含两路模拟信号输入,可同时两路信号可同时配置为电流/电压模式

	最小值	典型	最大值	单位
电压模式下的	-0.5	-	27	٧
输入电压				
电流模式下的	4mA		20	mA
输入电流				
电流模式下的	-0.5	-	5	V
输入电压				

注意:工具中的模拟输入端没有电流/电压限制保护。若超过所规定的数据,可能会导致永久性损坏。

6.4 电源适配器 (选配)

电源适配器是 xMate SR3-C 机器人的选配部件,可将市电转换为 xMate SR3-C 本体可用直流电源。

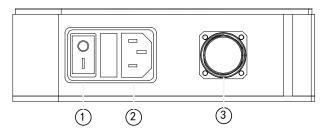


图 6-31 电源适配器接口

序号	含义
1	上电开关
2	市电 AC220V 输入
3	DC48V 输出

6.4.1 电源适配器上电

电源适配器的上电按钮为船型自锁转换开关,作为电源输入的主控制开关。

转换开关 (自锁定)	适配器状态
OFF	未通电
ON	已通电

6.4.2 电源输入

电源适配器的输入电源接口为 IEC 标准 C14 插座(针式),适配 IEC 标准 C13 插头(孔式),外部市电保险丝额定电流为 10A。

输入电源的电气规格如下:

TEST COMMENT O WANTER I .					
ROKAE 电源适配器					
	直流电压	48V			
输出	额定电流	21A			
	纹波与噪声	150mVp-p			
	电压范围	90~264VAC			
输入	频率范围	47~63Hz			
	效率	90%			
	工作温度	-20~+60°C			
环境	工作湿度	20~90%RH 无冷凝			
	存储温度, 湿度	-40~+85℃, 10~95%RH			
	耐震动	10~500Hz, 2G 10min/周期, XYZ 轴			
		各 60min			

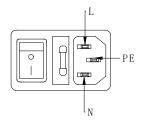


图 6-32 电源输入接口示意图

6.4.3 电源输出

适配器的电源输出接头为 7.62-3P 公头(孔式),输出为 xMate SR3-C 机器人可用的直流电压源(48VDC),可为机器人控制柜供电。

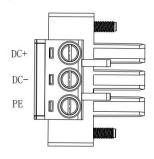


图 6-33 电源输出接口示意图

6.5 示教器 (选配)

示教器是 xMate SR3-C 机器人的选配部件。

6.5.1 示教器按钮说明

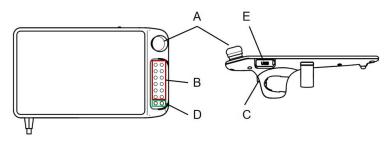


图 6-34 示教器按钮示意图

	描述
Α	急停按钮,用来在危险情况下触发紧急停止。
В	Jog 按钮,共6组12个,对应机器人的6个关节或者笛卡尔空间6个自由度。
С	三位使能开关,用于在手动模式下对机器人进行运动使能。
D	功能按钮,用来翻页触摸屏当前标识功能。
E	USB接口,用来连接U盘,使用橡胶盖保护。

6.5.2 如何握持示教器

通常情况下示教器都采用手持方式进行操作。习惯于右手操作用户需要使用左手握持示教器, 然后使用右手操作示教器上的按钮和触摸屏,推荐的握持方式如下图所示:

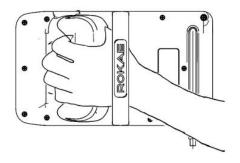


图 6-35 示教器持握示意图

7 维护 DOC-00001793 / 2.0-A

7 维护

7.1 简介

维护之前请仔细阅读"关于维护时的安全"小节、本手册以及相关手册,在充分理解安全维护方法的基础上进行维护工作。

7.2 关于维护时的安全

警告

- 请严格遵守维护步骤, 勿随意拆卸机器人零部件。
- 维护作业需由指定的专业人员完成。
- 如果未接受过培训,请在电源接通时远离机器人。另外,请勿进入到动作区域内。 即使看到机器人似乎停止了动作,但处于通电状态的机器人可能还会意外进行动作,并可能造成严重的安全问题。
- 请务必在安全围栏之外确认更换部件后的机器人动作。否则,动作确认之前的机器人可能会进行意想不到的动作,并可能造成严重的安全问题。
- 进入正规运转之前,请确认紧急停止开关与安全护板开关动作状态正常。如果在开关 不能正常动作的状态下进行运转,发生紧急状况时则无法发挥安全功能,可能会导 致重伤或重大损害,非常危险。

7.3 维护计划

为了使机器人能够长期保持高效的性能,必须定期进行维护。检修人员须编制检修计划并严格执行。

7.4 检查

序号	检查项	检查位置	检查间隔				
げち			日常	1 个月	3 个月	6 个月	12 个月
1	检查外观损 伤。	机器人外观	√				
		外部电缆			√		
	检查电源适配	机器人底座			√		
2	器以及机器人						
	底座接插件是 否松动	电源适配器			√		
3	编码器电池	软件启动时出现 一次电池。	见电池电	是低的错记	吴警告情况	下,或每1	.5 年更换

7.5 清洁

警告

不当使用液体清洁剂和设备电源未正确断开均可能会导致电击事故, 危及生命!

警告

只有完全断电后才可清洁作业;

切勿使用液体清洁剂清洁设备;

D0C-00001793 / 2.0-A 7 维护

请勿在设备潮湿状态下接通设备电源。

清洁机器人设备需要考虑以下几点:

只有经过指导的用户才能进行清洁;

勿使用任何化学试剂清洁机器人, 所有设备只可以用完全拧干的湿布清洁;

清洁过程中请勿对机械臂施加过大的力,且始终需要用手扶住需要手动清洁的部位,以免操 作时使机械臂过载,造成损伤;

只有当清洁设备的所有表面完全干燥后才允许重新上电。

警告

不当清洁可能会造成设备损坏。

DOC-00001793 / 2.0-A 8 零点标定

8 零点标定

8.1 简介

8.1.1 概述

本章介绍了关于零点标定的相关信息,请在标定时使用本章说明的标定工具。

8.1.2 什么是机械零点

机器人在设计时会预先定义一个初始姿态,在这个姿态下各个关节的角度为 0。从机械角度来讲,零点姿态指的是相邻连杆之间形成某个特定夹角时的姿态。从软件角度来讲,由于机器人使用编码器来记录关节角度,零点姿态是指伺服电机转动到特定编码器值时机器人的姿态。因此机械零点可以有两种解释:

- ●从观察人员的角度来看,机械零点是机器人各个关节运动到特定位置时所对应的机器人姿态;
- 从控制系统的角度来看,机械零点是若干个编码器的数值。

8.1.3 什么是零点标定

零点是机器人坐标系的基准,没有零点,机器人就无法判断自身的位置,所以为了获得尽可能高的绝对定位精度,使连杆系统可以正确的反应控制系统位置和速度指令,必须对机器人进行零点标定,使机械零点和算法零点尽量接近。

通俗的讲,零点标定是利用机械本体上预先设计好的某些定位装置将机器人的各个关节旋转 到特定的角度,并通知控制系统记录此时各关节电机编码器数值过程。

8.1.4 何时需要零点标定

8.1.4.1 机械传动系统出现故障

在发生如下情况时,必须使用专用标定工具进行零点标定:

- 更换电机、减速器等机械系统零部件之后。
- 发生剧烈碰撞后。
- ●控制系统断开时手动移动机器人关节。

8.1.4.2 编码器多圈计数器数据丢失

在发生如下情况时,可以使用专用标定工具进行零点标定

- ●整个硬盘系统重新安装。
- ●编码器电池更换后。

8.2 标定方法

8.2.1 机械标定

xMate SR3-C 机器人第一轴至第六轴采用箭头标定方式。每次只允许标定一个轴,具体操作过程如下:

步骤 1: 标定一轴

缓慢旋转一轴,当标定的两个箭头对准时,如图 35 红色方框所示,认为该轴零点机械标定完成。

8 零点标定 DOC-00001793 / 2.0-A

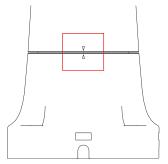


图 8-1 步骤 1

步骤 2:标定二、三、五、六轴 将按照步骤 1 的方式进行标定。

警告

注意机械标定过程结束后,请务必检查机器人本体状态,防止发生意外。

D0C-00001793 / 2.0-A 9 停用

9 停用

9.1 停用机器人

机器人的停用、存储和处置必须遵守国家特定的法律、法规和标准。

9.2 回收

请联系我们进行回收。

10 修订记录 DOC-00001609/E

10 修订记录

版本	日期	修订内容
Α	2024/1/30	初版发行

ROKAE

珞石机器人

400-010-8700

www.rokae.com sales@rokae.com