
xCore
Control System User
Manual

APartner You can Rely on in Production

xCore
Control System User Manual

Control System Version: V3.1.1
[Remarks]

Document Version: [Status]

Copyright © ROKAE 2015-2024. All rights reserved.

Contents in the Manual are subject to change without notice. We assume no
responsibility for any errors that may appear in the Manual.
We hope you can understand that in no event shall we be liable for incidental
or consequential damages arising from the use of the Manual and the
products described herein.
We cannot foresee all possible dangers and consequences. Therefore, the
Manual cannot warn the user of all possible hazards.
No part of the Manual may be reproduced in any form.
If you find the contents of the Manual wrong or in need of improvement or
supplement, please contact us for correction.
The original language of the Manual is Chinese, and all other language
versions are translated from the Chinese version.

Copyright © ROKAE 2015-2024. All rights reserved.
ROKAE (Shandong) Robotics Co., Ltd.

Shandong, China

Contents

xCoreControl System User Manual I

Contents
Contents ..I

1Manual Overview ..1
1.1About the Manual .. 1

1.2Target group ..1

1.3How to read the Manual .. 1

1.4Illustrations in the Manual ...1

1.5Contact ..1

1.6Manual reading guide .. 1

1.7Revision history of the Manual ...2

1.8Related manuals ... 2

2Safety ...3
2.1Introduction .. 3

2.2Safety responsibilities ..3

2.3Safety symbols ... 3

2.3.1Safety level .. 3

2.3.2Hazard description .. 3

2.4Safe stop ... 4

2.5Safety devices ...4

2.5.1Emergency stop (E-stop) .. 4

2.5.2Enabling device ...5

2.6Safety precautions in various situations ... 5

2.6.1Safety precautions in manual mode ... 5

2.6.2Safety precautions in auto mode .. 6

2.6.3Safety requirements for installation and operation ... 6

2.6.4Safety requirements for debugging ..6

2.6.5Safety requirements for maintenance .. 6

2.6.6Safe handling on the production line ... 6

2.6.7Safe handling of fire ..7

2.6.8Safe handling of electric shock .. 7

3Glossary ..8

4Basic Knowledge of Robot .. 9
4.1Introduction to this chapter ..9

4.2Frame .. 9

4.3Singularity ..10

4.3.1Typical singular positions of robots .. 10

4.3.2Singularity avoidance ...11

4.4Turning zone .. 14

Contents

II xCoreControl System User Manual

4.5Lookahead mechanism ..14

4.6Force control .. 14

4.6.1Introduction to force control .. 14

4.6.2Impedance control .. 14

4.6.3Force control search ... 15

4.6.4Force control application ..16

5Robot System Structure and Connection .. 18
5.1Introduction to this chapter ... 18

5.2Control system structure ... 18

5.2.1xPad2 Teach Pendant introduction .. 18

5.3Industrial robot system composition .. 19

5.3.1XBC5 series controller introduction ..19

5.3.2XBC5-M controller wiring, power-on, and start-up ...21

5.3.3XBC5 controller wiring, power-on, and start-up ..22

5.3.4XBC5-E controller wiring, power-on, and start-up ..23

5.4Collaborative robot system composition ..23

5.4.1ER and ER PRO ..23

5.4.2CR and SR ...26

5.4.3CR-C and SR-C .. 28

5.5HMI and robot connection .. 32

5.5.1xPad2 and robot connection ...32

5.5.2PC and robot connection .. 33

5.5.3Robot detection and connection ...38

6HMI Introduction ..41
6.1Introduction to this chapter ... 41

6.2RobotAssist introduction ...41

6.3General layout of HMI .. 41

6.3.1Top status bar .. 42

6.3.2Left sidebar ... 42

6.3.3Right operation interface ..43

6.3.4Bottom status bar .. 44

6.4Status monitoring ...45

6.4.13D model monitoring ... 46

6.4.2Task monitoring .. 46

6.4.3IO signal monitoring .. 46

6.4.4Network connection monitoring ..47

6.4.5Register monitoring ..48

6.4.6Conveyor belt monitoring .. 49

6.4.7Variable monitoring ..49

Contents

xCoreControl System User Manual III

6.5Programming module overview ... 50

6.6Setting module overview .. 50

6.7Communication module overview ... 51

6.8Safety module overview ..51

6.9Process package module overview ...51

6.10Log module overview ... 51

6.11Option module overview ...51

7Basic Operation of the Control System .. 53
7.1Introduction to this chapter ... 53

7.2Operating mode ... 53

7.2.1Switch manual ...53

7.2.2Switch auto ..53

7.2.3Mode confirmation and switching ...53

7.3Power on and off ..54

7.3.1Motor on ..54

7.3.2Motor off ... 54

7.4Motion control ... 55

7.4.1Jog ..55

7.4.2Quick adjustment ..56

7.4.3Drag ... 56

7.5Continuous trajectory playback .. 57

7.6Operation example I: Industrial robots realize Jog motion ...57

7.7Operation example II: CR collaborative robots realize drag .. 59

8Programming ... 61
8.1Introduction to this chapter ... 61

8.2Introduction to project ...61

8.3RL editor .. 62

8.3.1Overview ...62

8.3.2Tool introduction .. 63

8.3.3Auxiliary programming ..64

8.3.4Point offset tool ...71

8.3.5Move to function .. 75

8.3.6Show position function ...76

8.3.7Split screen function ...77

8.3.8Tool/work object pointer following function ..77

8.4Project configuration ... 77

8.4.1Robot selection ... 78

8.4.2Project ..78

8.4.3Synchronization .. 79

Contents

IV xCoreControl System User Manual

8.4.4Restore project .. 79

8.4.5Project upgrade ... 79

8.4.6Predefined parameters .. 79

8.5Custom production .. 80

8.5.1Overview ... 80

8.5.2Basic operations ..81

8.5.3Control introduction ... 82

8.6Task list .. 88

8.6.1Task attributes ... 88

8.6.2Regular tasks and motion tasks ..89

8.6.3Semi-static task ...91

8.6.4Task monitoring .. 93

8.7List of variables ... 93

8.7.1Variable naming rules ...93

8.7.2Variable scope ... 93

8.7.3Storage type .. 94

8.7.4Keywords pre-definition .. 94

8.7.5Number system conversion ..95

8.7.6Variable declaration .. 95

8.7.7User variable hold ...96

8.7.8Variable list operation ...97

8.8Point list ... 98

8.8.1Overview ... 98

8.8.2Operation examples .. 99

8.9Path list .. 104

8.9.1Overview ...104

8.9.2Operation examples ..105

8.10IO signal list .. 107

8.10.1Overview .. 107

8.10.2Operation examples ... 107

8.11User frame list ... 108

8.11.1Overview ...108

8.11.2Operation examples ..109

8.12Tool list .. 109

8.12.1Overview .. 109

8.12.2Basic concept ..109

8.12.3Operation examples ... 113

8.13Work object list ... 117

8.13.1Overview .. 117

Contents

xCoreControl System User Manual V

8.13.2Use of work object frame .. 118

8.13.3Operation examples ... 118

8.14Variable monitoring selection interface ...121

8.14.1Overview .. 121

8.14.2Operation examples ... 121

8.15About RL program .. 123

8.15.1RL program format and syntax ... 124

8.15.2RL program debugging ..124

8.15.3Debugging example ... 133

9Setting ... 135
9.1Introduction to this chapter ...135

9.2Controller settings ... 135

9.2.1Basic settings ..135

9.2.2Advanced settings .. 136

9.2.3Authorization settings .. 137

9.3HMI settings .. 138

9.3.1Basic settings ..138

9.3.2Teach Pendant mode .. 139

9.4User group ... 141

9.5Calibration ... 141

9.5.1Zero calibration .. 141

9.5.2Soft calibration ... 143

9.5.3Force sensor calibration ...143

9.6Calibration of the base frame ... 144

9.6.1Manual input ...144

9.6.2Six-point calibration ...145

9.7Frame calibration .. 145

9.7.1Global tool list .. 146

9.7.2Global work object list ...148

9.7.3Global user frame list ...151

9.8Dynamic settings ...152

9.8.1Dynamic feedforward .. 152

9.8.2Dynamic constraint .. 152

9.8.3Vibration suppression ...152

9.9Body parameters ..153

9.9.1RD parameters ..153

9.9.2DH parameters ..154

9.9.3Reduction ratio ... 155

9.9.4Overload coefficient ...155

Contents

VI xCoreControl System User Manual

9.9.5Coupling coefficient ...155

9.10Motion parameters .. 155

9.10.1Basic motion parameters ... 155

9.10.2Advanced settings .. 157

9.11Force control parameters .. 158

9.11.1Force control parameters ... 158

9.11.2Force control model ... 158

9.11.3Drag optimization ...159

9.11.4Drag without end-effector button operations ..159

9.11.5Force control model deviation threshold setting .. 159

9.11.6Dual-channel sensor deviation threshold setting ..159

9.12Quick adjustment .. 159

9.13Electronic nameplate ...162

9.14Error code alarm filtering ... 163

9.15Custom buttons ..164

9.15.1Custom button disable function .. 164

9.15.2Custom button - Insert Next Row ... 165

10Communication .. 167
10.1Introduction to this chapter ...167

10.2System IO .. 167

10.2.1System input ... 167

10.2.2System output ...168

10.3External communication ...169

10.3.1Overview .. 169

10.3.2Configurations ..169

10.3.3Interactive commands .. 171

10.4Bus devices ..176

10.4.1Overview of bus devices ..176

10.4.2Bus devices parameter configuration ..176

10.5Register ..182

10.5.1Overview of registers ...182

10.5.2Register parameter configuration ..182

10.5.3Register type ...183

10.5.4Register function code ... 185

10.5.5RL read/write register example ... 189

10.5.6Register remote control ..189

10.5.7Register import and export .. 194

10.6IO device ..196

10.6.1Overview .. 196

Contents

xCoreControl System User Manual VII

10.6.2Parameter configuration ...196

10.6.3Modbus expansion IO example ...200

10.7End-effector ...201

10.8RCI settings ... 202

10.9xPanel settings ...203

10.10Electric gripper and suction cup ...203

10.10.1Overview .. 203

10.10.2Configurations ..203

10.11Serial port settings ...207

10.12Encoder ..208

10.13OPC-UA .. 208

10.13.1Overview .. 208

10.13.2Open and close ... 208

10.13.3Safety .. 208

10.13.4Certificate ... 209

10.13.5Custom variable configuration ..209

10.13.6Event ... 210

11Safety ...211
11.1Introduction to this chapter ...211

11.2Safety password ...211

11.3Joint limit ...211

11.3.1Highlights ... 211

11.3.2Joint position .. 211

11.3.3Joint velocity .. 212

11.3.4Joint torque ... 212

11.3.5Joint power ... 213

11.4Robot limits ... 213

11.5Virtual wall .. 214

11.5.1Highlights ... 214

11.6Collision detection .. 214

11.6.1Highlights ... 214

11.6.2Notes ... 217

11.7Safe region ...217

11.7.1Highlights ... 217

11.7.2Association of safe region and register ...221

11.7.3Safe region retraction function .. 221

11.8Tool setting .. 224

11.8.1Tool position ... 224

11.8.2Tool orientation .. 224

Contents

VIII xCoreControl System User Manual

11.9Safety position ...225

11.9.1Highlights ... 225

11.9.2Association of safety position and register ...226

11.10Safety checksum ..226

11.11Safety controller .. 226

11.11.1Changes after equipping safety controllers ...227

11.11.2Safety DO configuration ..227

12Process Package .. 229
12.1Conveyor belt tracking ... 229

12.2Track .. 229

12.3General stacking ..229

12.4Tray .. 230

12.5PV typesetting ... 230

12.6PV inserting ...230

13Log .. 231
13.1HMI logs ..231

13.2Controller logs ...231

13.3Operation logs ... 232

13.4Log timeline .. 232

13.5Internal logs ...233

13.6Hardware status ...233

13.7Diagnostic setting ..234

13.8Working condition verification .. 235

14Options ...237
14.1Connect ..237

14.2About ROKAE .. 237

14.3Software upgrade .. 237

14.3.1Controller upgrade ... 237

14.3.2Controller backup ...238

14.3.3HMI upgrade .. 238

14.3.4Restart robot ... 238

14.3.5Erase configuration .. 238

14.3.6Erase all configurations ... 239

14.3.7Example of control system upgrade ..239

14.4Export .. 240

14.5Import .. 240

14.6File manager ..241

14.7Demos .. 241

14.7.1Seven-axis redundant motion .. 241

Contents

xCoreControl System User Manual IX

14.7.2Obstacle avoidance .. 243

14.7.3Collision detection ... 245

14.7.4Compliance demo .. 247

15RL Commands ... 250
15.1Variable Type ...250

15.1.1Int .. 250

15.1.2Double ...250

15.1.3Bool ...250

15.1.4String ...250

15.1.5Array ... 251

15.1.6byte ..251

15.1.7clock ..251

15.1.8Implicit type conversion .. 252

15.1.9Confdata ..252

15.1.10jointtarget ..253

15.1.11load ..253

15.1.12orient ... 255

15.1.13pos ... 256

15.1.14pose ... 256

15.1.15robtarget ..256

15.1.16signalxx ...257

15.1.17speed ... 258

15.1.18tool .. 259

15.1.19Trigdata ...260

15.1.20wobj .. 261

15.1.21zone ...262

15.1.22torqueinfo ... 264

15.1.23SocketServer ...264

15.1.24SocketConn .. 265

15.1.25FCBoxVol ... 265

15.1.26FCSphereVol .. 266

15.1.27intnum ... 266

15.2Basic variable and structure ... 266

15.2.1Composition of structure ... 266

15.2.2Use of structure .. 267

15.3Function ... 267

15.3.1Function definition ...267

15.3.2Function call ... 269

15.4Commands ...269

Contents

X xCoreControl System User Manual

15.4.1Variable type conversion ... 269

15.4.2Motion commands ..270

15.4.3Trigger command ... 277

15.4.4Force control commands ... 280

15.4.5Drag and replay .. 289

15.4.6IO commands ... 290

15.4.7Communication commands ...291

15.4.8Network command ...297

15.4.9Logic commands .. 300

15.4.10Home command ... 305

15.4.11Math command ...306

15.4.12Bit operation ...308

15.4.13String operations .. 310

15.4.14Operators .. 313

15.4.15Clock commands ..316

15.4.16Advanced commands ...317

15.4.17Function commands ...329

15.4.18Register commands ..333

15.4.19End-effector commands ...334

15.4.20Interrupt commands ... 338

16Appendix ...340
16.1Details of user permission .. 340

16.2Introduction of collaborative robot's end-effector handle .. 341

16.2.1ER series ... 341

16.2.2CR series ...341

16.3Point position and path teaching (based on the collaborative robot's end-effector handle) 342

16.3.1Point position teaching .. 342

16.3.2Path teaching .. 342

16.4OPC-UA Robotics model ... 342

16.4.1MotionDevices model ..343

16.4.2Controllers model ...344

16.4.3SafetyStates .. 346

16.4.4CustomVariables .. 346

17Troubleshooting ...347
17.1Control System Error Codes ...347

17.1.11XXXX ...347

17.1.23XXXX ...368

17.1.34XXXX ...419

17.1.45XXXX ...423

Contents

xCoreControl System User Manual XI

17.1.56XXXX ...435

0 1Manual Overview

xCoreControl System User Manual 1

1Manual Overview
1.1About the Manual

Thank you for choosing our ROKAE robot system.
The Manual describes the following instructions for the xCore control system:
 Composition and basic operation of the control system
 Programming and advanced parameter setting of the control system
 Option function introduction of the control system
 RL command set
 Error code list of the control system
Please read the Manual and other related manuals carefully before installing and using the robot
system.
After reading, keep it properly for future reference.

1.2Target group
The Manual is intended for:
 Operators
 Product technicians
 Service technicians
 Robot programmers
Please ensure that the above personnel have acquired the knowledge of control system operation and
have received our training.

1.3How to read the Manual
The Manual includes a separate safety section that must be read through before proceeding with any
installation or maintenance procedures.

1.4Illustrations in the Manual
Due to product upgrades or other reasons, some figures in the Manual may differ from the actual
products. However, the operating procedures are correct.
Also, figures from other models may be used to describe some general information.

1.5Contact
For information about the maintenance and repair of the robot, please contact our after-sales
department or the local dealer.
Get the following information ready before contacting us:
 Controller model/serial number
 Robot model/serial number
 Software name/version
 Problems with the system

1.6Manual reading guide
The Manual is divided into the following chapters.

Chapter Title Content Summary
1 Manual Overview General situation of the Manual.
2 Safety Safety-related matters.
3 Glossary Glossary involved in the Manual.

4 Basic Knowledge of
Robot Some necessary basic knowledge of robot.

5 Robot System Structure
and Connection Robot system structure and physical connection of different models.

6 HMI Introduction Introduction to the overall layout and functions of HMI.

7 Basic Operation of the
Control System

Basic operations commonly used in the control system; and demonstration of the most
basic operations of industrial and collaborative robots by examples.

8 Programming Detailed introduction to the use of programming module.
9 Setting Detailed introduction to various settings of the control system.
10 Communication Detailed introduction to communication functionality and usage.
11 Safety Introduction to safety-related functions.
12 Process Package Overview of process package.
13 Log Introduction to log functionality and usage.
14 Options Introduction to option module functionality and usage.
15 RL Commands Detailed introduction to all RL commands.

16 Appendix Details of user permission, and functionality and usage of end-effector handles of
collaborative models.

0 1Manual Overview

2 xCoreControl System User Manual

17 Troubleshooting Fault codes, handling list.

1.7Revision history of the Manual
Version No. Date Main Revision Content

V2.1 November 2023 New manual creation;
V2.2 March 2024 2.2 Added new function descriptions
V3.0 December 2024 3.0 Added new function descriptions
V3.1 July 2025 3.1 Added new function descriptions

1.8Related manuals
The xCore Control System not only offers impeccable core functionalities, but also encompasses an extensive array of advanced
features. Regarding the extended functions, we provide the following documents. You can contact us if you need them.

Name Introduction
xCore Control System User Manual Describe the basic functions of the xCore Control System;

xVision User Manual Describe the basic functions of xVision;
xCore_SDK_Android User Manual Describe the use of xCore-SDK;
xCore_SDK_Python User Manual Describe the use of xCore-SDK;
xCore_SDK_C++ User Manual Describe the use of xCore-SDK;
xCore_RCI_User Manual Describe the use of RCI;

User Manual for Conveyor Tracking Function Describe the use of conveyor tracking function;
Tray Process Package User Manual Describe the use of tray process package;

Stacking Process Package User Manual Describe the use of stacking process package;
RokaeStudio User Manual Describe the use of off-line programming software;

PV Typesetting Process Package User Manual Describe the use of PV typesetting process package;
PV Inserting Process Package User Manual Describe the use of PV inserting process package;

Profinet User Manual Describe the use of Profinet bus;
EthernetIP User Manual Describe the use of EthernetIP bus;

External Axis Track User Manual Describe the use of external axis rack;

0 2Safety

xCoreControl System User Manual 3

2Safety
2.1Introduction

This chapter describes the safety principles and procedures that need to be noted when using the
robot.
The contents related to the design and installation of the external safety protection devices of the
robot are not covered in this chapter. You can contact your system integrator to obtain such
information.

2.2Safety responsibilities
ROKAE is dedicated to but not liable for providing reliable safety information. Even if all operations
are carried out according to the safe operation instructions, we can not guarantee that our industrial
robots will not cause personal and property losses.

2.3Safety symbols
There may be different degrees of danger when operating the robot in accordance with the Manual, so
there will be a special safety symbol in the vicinity of dangerous operation instructions to remind the
user to be careful. The contents include:
An icon that indicates safety level and the corresponding name, such as warning, danger, note, etc.;
A brief description given to illustrate the possible consequences if the operator fails to eliminate the
danger;
The operating instructions on how to eliminate dangers.

2.3.1Safety level
Icon Name Explanation

DANGER
Failure to follow the contents with this sign will cause
serious or even fatal harm to the personnel, and also
will/may cause serious damage to the robot.

Warning
Failure to follow the contents with this sign may cause
serious and even fatal personal injury, and also will cause
great damage to the robot.

Electric shock
hazard

It indicates that the current operation may cause an
electric shock hazard, which will result in a serious or
even fatal injury.

Caution Failure to follow the contents with this sign may cause
personal injury, and also may cause damage to the robot.

ESD

It indicates that the components involved in the current
operation are sensitive to static electricity. Failure to
follow the contents with this sign may cause damage to
the components.

Note It is used to prompt some important information or
prerequisites.

2.3.2Hazard description
Icon Name Explanation

Squeezing
Operators and maintenance personnel who enter the
motion range of the robot during debugging, repair,
overhaul, and tool clamping may be injured.

Hand pinching The maintenance personnel have a risk of hand pinching
when approaching belt drive parts during the maintenance.

Strike
Operators and maintenance personnel who enter the
motion range of the robot during debugging, repair,
overhaul, and tool clamping may be seriously injured.

Friction
Operators and maintenance personnel who enter the
motion range of the robot during debugging, repair,
overhaul, and tool clamping may be injured.

Parts flying out

Operators and maintenance personnel who enter the
motion range of the robot during debugging, repair,
overhaul, and tool clamping may be seriously injured if
tools or work objects are ejected due to loose clamping.

0 2Safety

4 xCoreControl System User Manual

Fire Electrical short-circuit and burning wires/devices may
cause fire, which may result in serious injuries.

Hot surface
During the maintenance and repair of the equipment, if
maintenance personnel touch the robot's hot surface, they
may be burned.

2.4Safe stop
There are three ways to stop the robot: STOP 0, STOP 1, and STOP 2.
Safe stop refers to a stop triggered by the safety controller, which only supports STOP 0 and STOP 1,
while STOP 2 can only be triggered by the control system.

STOP 0

As the stop method of the highest safety level, STOP 0 cuts off the power supply
of motors and closes the band-type brakes of all joints immediately after it is
triggered. During the stopping process, the robot is uncontrolled, so it may
deviate from the programmed path after it is stopped.
The safe stop of manual mode belongs to STOP 0.
STOP 0 supports deceleration to a complete stop at maximum capability.

STOP 1

Once STOP 1 is triggered, the control system immediately executes the
deceleration process along the programmed path. Thereafter, whether the robot
comes to a complete stop or not, the safety controller will cut off the power
supply of motors and close the band-type brakes of all joints. Since the stop is
controlled, in most cases, the robot will finally stop on the programmed path.
Therefore, This emergency stop method provides the best protection for nearby
equipment.
The safe stops arising from the opening of the safety gate/safety grating in
automatic mode and pressing of the emergency stop button in automatic mode
are STOP 1.
STOP 1 supports two modes of stopping: deceleration to a complete stop at
maximum capability, and normal planned stopping.

STOP 2

Once STOP 2 is triggered, the control system immediately executes the
deceleration along the programmed path until the robot stops completely. The
power supply of the motors remains on and the band-type brakes are still open,
while the robot stays in the current position.
Stopping the robot through the stop button on the HMI and external signals
trigger the stopping mode STOP 2.

Note

1. Emergency stop is only used to stop the robot immediately in dangerous circumstances.
Emergency stop shall not be used for normal stops. Otherwise, extra and unnecessary wear may be
caused to the brake and transmission system, which will eventually reduce the robot's service life.

2.5Safety devices
2.5.1Emergency stop (E-stop)

Emergency stop buttons are for manually triggering an emergency stop, and most of them are red in
the shape of a mushroom head. In general, a yellow substrate, protective casing, or warning sign is
also attached to the emergency stop button.
The emergency stop button is mechanically locked through the safety lock mechanism when it is
pressed and must be reset through manual release. Most emergency stop buttons are released by
rotation along the rotation direction indicated on the button surface. Additionally, some buttons also
support releasing by upward pulling.

0 2Safety

xCoreControl System User Manual 5

2.5.2Enabling device
The enabling device is a special switch with 2 segments of pressing and 3 positions, which is also
called three-position enabling switch (hereinafter referred to as “enabling switch”), and is used to
control the on and off of the power supply of the robot in the manual mode, thus realizing the motion
enabling of the robot. The motor power is powered on only when the enabling switch is pressed and
kept in the middle so that the robot is in a state ready for motion. Releasing or pressing the switch all
the way down will cut off the motor power.

Note

The yellow button on the Handheld Enabling Device is an enabling switch. When the enabling
switch is pressed and held in the middle position, the power supply of the motor is turned on and
automatically enabled, and the system is in a power-on state, and you can jog the robot or execute
a program. Releasing or pressing the switch all the way down will cut off the motor power and
make the system return to the power-off state.
In order to use the Teach Pendant safely, the following requirements must be observed:
1. The enabling switch shall function properly in any circumstances;
2. The enabling switch shall be released immediately when no robot motion is required during

programming or debugging; and
3. Any person who enters the robot's working space must carry a handheld enabling device to

prevent others from starting the robot without the knowledge of the involved personnel.

Warning

It is strictly prohibited to use external devices to keep the enabling switch locked or stopped in the
middle position!

2.6Safety precautions in various situations
2.6.1Safety precautions in manual mode

In manual mode, the motion of the robot is under manual control. You can only Jog the robot or
execute a program when the enabling
switch is held in the middle position. The manual mode is used during the programming and
debugging of the robot, as well as the commissioning of the workstation.

2.6.1.1Speed limit in manual mode
The motion velocity of the robot end-effector is limited to less than 250 mm/s in manual mode, that is,

0 2Safety

6 xCoreControl System User Manual

no matter when you Jog the robot or execute a program, regardless of the set velocity in the program,
the maximum motion velocity of the robot end-effector will not exceed 250 mm/s.

2.6.1.2Bypassing external safety signals
In manual mode, signals of external safety devices such as the safety door and safety grating will be
bypassed, i.e. in manual mode, the
system can still perform motor-enabling operations even if the safety door is opened, and the system
will not prompt the safety door opening information for the convenience of debugging.

2.6.2Safety precautions in auto mode
The auto mode is used for robot program running during the formal production process. In auto mode,
the enabling switch will be bypassed so that the robot can run automatically without manual
intervention.

2.6.2.1Activating external safety signals
In auto mode, external safety devices such as the safety door and safety grating will be activated.
When the safety door is opened, the motor power supply will be cut off and
the band-type brake will be closed.

2.6.3Safety requirements for installation and operation
 Handling and installation of the robot equipment must be carried out according to the methods

described in the Manual. Otherwise, the robot may fall due to misoperation, thus leading to
personal injury and death or equipment damage.

 When the robot equipment is put into use for the first time after installation, it is necessary to
run it at low velocity first and then gradually increase the velocity rather than running it at high
velocity from the start.

 By default, program and system variable information is stored in the controller storage device.
In order to prevent data loss caused by accidents, it is recommended that the user makes data
backups regularly.

2.6.4Safety requirements for debugging
Debugging shall be carried out outside the safeguarded space as much as possible. When debugging
must be carried out inside the safeguarded space, special attention shall be paid to the following
matters:
 Carefully check the situation inside the safeguarded space and enter into it only after

confirming there is no danger.
 Confirm the positions of all debugging personnel inside the safeguarded space.
 Confirm the status of the entire system before proceeding with the work.
 Make sure that the emergency stop button can be pressed whenever necessary.
 Run the robot at low velocity.
 When the above debugging is finished, the debugging personnel must stay outside the

safeguarded space.

2.6.5Safety requirements for maintenance
 It is necessary to carefully check the situation in the safeguarded space and confirm that there is

no danger before entering the safeguarded space. The positions of all maintenance personnel in
the safeguarded space shall be confirmed.

 When the power supply is switched on, some maintenance operations may pose a risk of
electric shock. Therefore, the power supply of the robot equipment and system needs to be cut
off before the maintenance is carried out.

 During the maintenance, other personnel shall be prevented from switching on the power
supply accidentally.

 To avoid unnecessary personal injury or adverse impact on the equipment, you shall not place
any part of your body on any part of the robot equipment during the operation.

 Appropriate lighting shall be provided during the maintenance.
 In case of part replacement, make sure to use parts specified by ROKAE. Otherwise, the robot

equipment may be damaged.
 Parts removed during the replacement (such as screws) shall be correctly installed back to their

original positions. If you find the parts not enough or redundant, you need to confirm again and
make sure to install them correctly.

2.6.6Safe handling on the production line
In most cases, the robot is just a part of the production line. Therefore, robot faults will not only
affect the robot itself, but may also affect the entire production line. Likewise, problems with other
parts of the production line may also affect the robot. For this reason, a fault remedial plan shall be
designed by personnel who are very familiar with the entire production line to improve the safety of
the whole system.
 Pay attention to other devices that interact with the robot

0 2Safety

xCoreControl System User Manual 7

For example, when a robot needs maintenance, you must first remove it from the production line, as
well as remove other devices interacting with the robot, such as the robot responsible for feeding
materials to the above robot.
 Pay attention to other running devices around the robot
For example, robots on the production line need to grab work objects from the conveyor belt.
Therefore, when a robot fails, in order to guarantee uninterrupted
production, the conveyor belt may keep running while the robot is being repaired. The robot
maintenance personnel must pay extra attention to safety, give advance consideration to the risks that
might arise from the running conveyor belt, and develop detailed safety measures for working in such
an environment.

2.6.7Safe handling of fire
It is required to keep calm when a fire hazard is imminent or has not yet begun to spread. You can use
on-site fire-extinguishing devices to put out the flame. It is strictly prohibited to use water to put out a
fire caused by a short-circuit fault.

Warning

The fire-extinguishing devices in the working space of the robot shall be self-prepared by the user,
and the user shall choose appropriate fire-extinguishing devices according to the actual situation.

If the fire has spread and is beyond control, the workers on the site shall notify other workers
immediately to give up their personal belongings and evacuate immediately through emergency exits
rather than try to put out the fire. DO NOT use the elevators, and be sure to inform the fire brigade
during evacuation. If one person's clothing catches fire, ask him/her not to run but to lie flat on the
ground immediately, and put out the fire using clothes or other suitable items and methods.

2.6.8Safe handling of electric shock
When someone gets an electric shock, do not panic and cut off the power supply immediately.
Appropriate methods and measures shall be adopted without hesitation according to specific site
conditions. Generally, there are several methods and measures as follows:
1. If the power switch or button is very near to the point of the electric shock, it shall be switched

off at once to cut off the power supply.
2. If the power switch or button is far away from the point of the electric shock, it is

recommended to use insulated pliers or an axe, knife, and shovel with a dry wooden handle to
cut off the live wire on the mains side (power supply side), and the cut wire must not contact
with the human body.

3. If the wire is over or under the body of the victim, it is suggested to use a dry stick, board,
bamboo pole, or other tools with an insulated handle (by gripping the insulated handle) to
remove the wire. No metal bar or wet object shall be used to prevent the rescuer from also
getting an electric shock.

Handling of the victim after separation from the power source
1. If the victim is conscious, make him/her lie on the back, keep a close watch over him/her, and

let him/her not stand or walk for the time being.
2. If the victim is confused, make him/her lie on the back to keep the airways open, and call the

victim or pat him/her on the shoulder at an interval of 5 seconds to judge if he/she loses
consciousness completely. Do not call the victim by shaking his/her head. Meanwhile, contact
the hospital as soon as possible.

3. If the victim loses consciousness, confirm his/her respiratory conditions and heartbeat within
10 seconds. If neither breath nor arterial pulse is sensed, the victim may have a cardiac arrest
and shall be given immediate first aid treatment by cardiopulmonary resuscitation.

0 3Glossary

8 xCoreControl System User Manual

3Glossary
This chapter briefly introduces some terms used in the Manual.

Glossary Definition

RobotAssist
A host computer software of ROKAE xCore Control System, with functions such as robot motion control,
programming, parameter configuration, and status monitoring, can run on such devices as xPad2 Teach
Pendant and PC.

HMI Human Machine Interface.
HMID Human Machine Interface Device.
RC Robot Controller.

RCI Rokae Control Interface, external control interface for ROKAE robots, with real-time underlying control
supported.

SDK Software Development Kit, which will gradually replace RCI to realize underlying control of robots
through C++ and other languages.

Project A management collection of programs, tasks, and other objects that control the operation of the robot; data
objects of a project can be exported and reused in other projects or robots.

Task In xCore, it is as it suggests.
Module In xCore, we refer it to as program module.

Elbow
It is the angle between the arm plane and the reference plane. The arm plane refers to the plane formed by
the robot's lower arm and upper arm, and the reference plane refers to the arm plane formed when the
three axes are set to zero and the end-effector reaches the predefined pose.

RL Rokae Robot Language. It provides various commands to assist the robot in building projects.
xPad2 Teach Pendant.
RSC Robot Safety Controller.
JOG Inching.

Null-space motion For robots with redundant degrees of freedom, null-space motion can be utilized to move the robot's joints
while keeping the end-effector stationary.

PERS variable
Persistent variable: During the execution of a program, if the value of this type of variable changes, the
variable will be automatically amended from the initial value to the current value, thus achieving the
effect of "Persistent" storage.

0 4Basic Knowledge of Robot

xCoreControl System User Manual 9

4Basic Knowledge of Robot
4.1Introduction to this chapter

This chapter introduces the basic knowledge of the robot. Familiarity with the contents of this chapter
will help to better understand and master the use of the control system and robot.

4.2Frame
Any object (tool, work object, etc.) in space has six degrees of freedom (DOF): three translational
degrees of freedom and three rotational degrees of freedom. The three translational degrees of
freedom constitute the position; the three rotational degrees of freedom constitute the orientation; and
these six degrees of freedom are collectively referred to as pose. The pose of an object can be
described by the frame attached to it, generally using the Cartesian frame (hereinafter referred to as
the "frame").
The robot is a mechanism with multiple degrees of freedom. Its typical operation mode is to use a
tool attached to the flange to execute the movements relative to external work objects. This mode of
operation can be described through the frame and its relative motion.
The frames currently used in the xCore system are shown below:

No. Frame Meaning

A Flange frame Defined in the center of the robot flange;
The flange frame is defined relative to the base frame;

B Tool frame

Defined at the end of the tool;
When the tool is a handheld tool (ordinary tool), the tool frame is
defined relative to the flange frame; and when the tool is an external
tool, the tool frame is defined relative to the user frame;

C Base frame

Defined in the center of the robot base;
The base frame is defined relative to the world frame.
Note: If the robot is not installed in the default way, such as
upside-down or slanted installation, the base frame needs to be
calibrated first;

D Work object
frame

Defined in the work object;
When the work object is an external work object (ordinary work
object), the work object frame is defined relative to the user frame;
and when the work object is a handheld work object, the work object
frame is defined relative to the flange frame;

E User frame
The user frame is used as a reference when defining the work object
frame, and it cannot be used separately;
The user frame is defined relative to the world frame;

F World frame

The world frame is generally used as the reference frame and has no
specific position. When a single robot is installed normally, it
coincides with the robot base frame by default; and when multiple
robots or external devices are involved in collaboration, the
unification of motion reference can be achieved by unifying their
world frames into a same frame;

0 4Basic Knowledge of Robot

10 xCoreControl System User Manual

4.3Singularity
There are a few special poses in the robot's working space that the robot can arrive at using a myriad
of different joint configurations. Such poses are called singularities. Singularities may cause problems
to the control system when calculating joint angles based on Cartesian space pose.
There are no singularity problems when the robot performs joint motion.
When the robot executes a Cartesian space trajectory near a singular point, the speed of some joints
may be very fast, potentially leading to an error report and subsequent cessation of the robot's
operation.

4.3.1Typical singular positions of robots
Robots with different configurations have different singular positions. Typical singular positions of
some robot configurations are described below.

4.3.1.1Singular position of the six-axis industrial robot
Singularity Configuration Explanation

Shoulder
singularity

When the
robot's wrist
center is
located on the
Axis 1.

Wrist
singularity

When the Axis
4 andAxis 6
coincide (Axis
5 angle is 0).

Elbow
singularity

When the wrist
center, Rotation
Axis 2, and
Rotation Axis 3
are in a straight
line.

0 4Basic Knowledge of Robot

xCoreControl System User Manual 11

4.3.1.2Singular position of ER PRO collaborative robot
The singularity of ER RPO collaborative robot can be divided into the following cases:
Singularity Configuration Explanation

Axis 2
singularity

When the angle of Axis 2 is equal
to 0°, the robot is unable to
distinguish between the angles of
Axis 1 and Axis 3 when solving
the inverse kinematics.

Axis 4
singularity

When the angle of Axis 4 is 0°,
the robot is restricted to move in
the direction parallel to Axis 3 or
5. This singularity causes the
robot to lose one degree of
freedom at the root of the wrist
(the root of the wrist is unable to
move along the axis of the arm).
In this case, the Axis 3 and Axis
5 positions cannot be obtained
through inverse kinematics.

Axis 6
singularity

When the robot's angle of Axis 6
is equal to 0°, the robot is unable
to distinguish between the angles
of Axis 5 and Axis 7 when
solving the inverse kinematics.

Wrist center
singularity

When the wrist center is directly
above Axis 1, the robot cannot
accurately determine the Axis 1
angle when solving the inverse
solution.

4.3.2Singularity avoidance
The singularity problems stem from the robot configuration and cannot be completely avoided. In
practical task programming, if the robot must pass through the vicinity of the singularities, it can be
considered to reduce some constraints (such as orientation or path accuracy) to make the robot pass
through the singularities smoothly.
xCore Control System also provides a variety of singularity avoidance methods:

Method I Axis 4
Locking

Before enabling the singularity avoidance method, it is necessary to move the robot's Axis 4 to 0°
or ±180°. After this singularity avoidance method is activated, the robot will keep Axis 4
immobile, and perform orientation interpolation in a specialized manner on the premise of
ensuring the accurate TCP position. You can refer to the sections of RL command
SingAreaLockAxis4 on/off and jog mode.

Method II
Cartesian
Sacrifice
Orientation

After this singularity avoidance method is enabled, the wrist-type singularities can be passed
through by changing the morphology of the robot. Note: With this function, the wrist morphology
of the robot during motion may differ from that taught during teaching (not only at the teaching

0 4Basic Knowledge of Robot

12 xCoreControl System User Manual

Interpolation points where singularities are traversed, but also potentially at subsequent teaching points).

Method
III

Joint Space
Interpolation

After this singularity avoidance method is enabled, the control system will perform singularity
detection on the subsequent Cartesian trajectories until this function is turned off.
For Cartesian trajectories that do not contain singularities, the robot moves along the ordinary
trajectory. When a Cartesian trajectory contains a singularity, the control system detects it and
splits the original trajectory P0P1 into three segments: P0Pcut1, Pcut1Pcut2, and Pcut2P1. The
segments P0Pcut1 and Pcut2P1 continue to follow the original trajectory and undergo Cartesian
interpolation, while the segment Pcut1Pcut2 adopts joint space interpolation to navigate around
the singularity. The three trajectory segments are smoothly transitioned using a turning zone, as
shown in the following figure.

Singularity avoidance: Schematic diagram of joint space trajectory interpolation
For specific use, you can refer to the RL command SingAreaJointWay.
Note:
 Near singularities, the movement amplitude of a robot's joints tends to be significant. Therefore,

you need to confirm whether it is necessary to use a singularity avoidance command. It is
preferred to avoid singularities by altering the trajectory points.

 When using a singularity avoidance command, it is recommended to first confirm that the
robot's trajectory with the singularity avoidance command enabled satisfies the operational
requirements before performing the official operation.

 Near singularities, the movement amplitude of a robot's joints tends to be significant, so you
need to confirm the surrounding environment before using it.

 In view of the above reasons, if the robot operating point or program run logic is affected by
external signals, it is recommended to carefully confirm the program logic and trajectory before
use.

The specific characteristics of the above three singularity avoidance methods are as follows:
Mode and
Feature Axis 4 Locking Cartesian Sacrifice Orientation

Interpolation Joint Space Interpolation

Motion
feature

1. Before enabling this command,

it is necessary to first move the

robot's Axis 4 to 0° or ±180°.

2. After this command is enabled,

the robot keeps Axis 4 immobile

for subsequent motion

commands.

1. After enabling this command, the
robot will change the wrist
morphology, resulting in a change in
the tool orientation to allow passage
through trajectories with wrist
singularities.
2. The wrist morphology during
motion may sometimes differ from the
taught morphology, not only at the
teaching points where singularities are
traversed, but also potentially at
subsequent teaching points.

1. The sections of the trajectory
before and after the singularity
adopt joint interpolation
(MoveAbsJ) for movement,
while the remaining sections
retain the original Cartesian
trajectory's movement method. A
turning zone is used for a smooth
transition between the above two
movement methods.

Trajectory
form change

1. Position trajectory remains

unchanged.

2. Special orientation

interpolation methods are

employed.

1. Position trajectory remains

unchanged.

2. Orientation interpolation method is

altered.

1. Position trajectory is altered.
2. Orientation trajectory is
altered.

Reachability
of target
points

The robot's workspace is partially
reachable. Specifically, partial
target points are reachable when
the Axis 4 is set at 0° or ±180°.

The robot's workspace is partially
reachable.

The robot's entire workspace is
reachable.

Turning
zone feature

1. Generating turning zones

between similar trajectories is

1. Generating turning zones between

similar trajectories is supported,

Generating turning zones is
supported between singularity
avoidance trajectories, as well as
between singularity avoidance

0 4Basic Knowledge of Robot

xCoreControl System User Manual 13

supported, specifically, between

the motion trajectories when

SingAreaLockAxis4 is on and off.

2. Generating turning zones

between different types of

trajectories is not supported, that

is, generating turning zones is not

supported between motion

trajectories that precede or follow

the activation of the

SingAreaLockAxis4 on/off

command.

specifically, between the motion

trajectories when SingAreaWrist is on

and SingAreaWrist4 is off.

2. For different types of trajectories,

generating turning zones is supported

between joint space trajectories and

singularity avoidance trajectories,

while generating turning zones is not

supported between Cartesian space

trajectories and singularity avoidance

trajectories.

trajectories and ordinary
trajectories.

Lookahead
feature

The lookahead mechanism is
interrupted. Specifically, the
SingAreaLockAxis4 on/off serves
as a blocking command, and the
control system will only continue
to parse singularity avoidance
commands after the robot has
completed the trajectory
preceding the activation of the
SingAreaLockAxis4 on
command. Similarly, the control
system will resume parsing
subsequent commands only after
the robot has executed the motion
command preceding the
activation of the
SingAreaLockAxis4 off
command.

The lookahead mechanism is not
interrupted.

The lookahead mechanism is not
interrupted.

Whether the
singularity
avoidance is
mandatory

Mandatory. After the axis locking,
all Cartesian motion commands
are interpolated by the special
interpolation form corresponding
to the locked axis until the axis
locking function is turned off.

Mandatory. After the sacrifice
orientation singularity avoidance is
enabled, all Cartesian motion
commands are interpolated by the
special interpolation form
corresponding to the locked axis until
the sacrifice orientation singularity
avoidance function is turned off.

Not mandatory. After this
singularity avoidance is enabled,
the control system automatically
detects whether there are
singularities in each Cartesian
motion trajectory. The trajectory
that only contains singularities
will adopt special forms of
interpolation, while the trajectory
that does not contain singularities
still employs the motion form of
ordinary trajectories for
interpolation.
Note: The calculation amount of
the control system will increase
after this function is enabled, so
this function is not enabled
generally unless necessary.

Applicable
scenarios

1. The trajectory where the flange

remains parallel to the base or

moves along the z-axis of the

base.

2. During the robot's movement, it

is permissible to keep Axis 4

immobile, such as stacking.

Do not mind the orientation accuracy
of trajectories, nor how the robot
reaches the target points, only
pursuing the ability to reach the
Cartesian position of the target points.

Do not mind the position
accuracy and orientation
accuracy of trajectories, nor how
the robot reaches the target
points, only pursuing the ability
to reach the target points.

Supported
model

Industrial standard six-axis series
(XB, NB model), collaborative

Industrial standard six-axis series
(XB, NB model), collaborative xMate

Industrial standard six-axis series
(XB, NB model)

0 4Basic Knowledge of Robot

14 xCoreControl System User Manual

xMate CR/SR CR/SR
Whether Jog
is supported Supported Not supported Not supported

4.4Turning zone
The motion of a robot typically involves sequentially executing multiple trajectories programmed and
set by the user. Usually, these trajectories are not smoothly connected, and there are various "spikes"
between them. The presence of these "spikes" forces the robot to first stop at the end of a trajectory
before starting the next trajectory. To enable continuous motion between trajectories, it is necessary to
eliminate such "spikes", and different trajectories can be smoothly connected by generating turning
zones. See the following figure:

The turning zone type includes Cartesian space turning zone and joint space turning zone. For the
detailed definition and specific parameters of the turning zone, please refer to the section below, "RL
Command"-"zone".

4.5Lookahead mechanism
Lookahead means that the control system handles the subsequent program commands in advance
when the robot is executing the current command during robot movement.
The introduction of the lookahead mechanism can be advantageous in the following aspects:
 Obtain the speed of the front trajectory, the acceleration requirements, and the constraints of the

robot itself, so as to plan the control strategy for optimal performance;
 Plan the turning trajectory of the turning zone according to the settings of the programmed

turning zone;
 Acquire an abnormal state near the soft limit/boundary and singular points, etc., so that it can

be handled in advance;
For a more detailed introduction to the lookahead mechanism, refer to the section below,
"Programming"-"About RL program"-" RL program debugging".

4.6Force control
4.6.1Introduction to force control

The robot force control is a process of interaction between the robot end-effector and forces in the
external environment. During non-contact robot motion control, only the position control process
(velocity and accuracy) is considered. When there is contact with the environment, pure position
control requires very high accuracy of the robot and the environment to avoid damage to the robot
and the environment caused by contact forces resulting from positional deviations.
Unlike pure position control, robot force control introduces a force/torque feedback loop when
interacting with the environment. The loop is used to change the motion characteristics of the robot,
which enables dynamic interaction with the external environment. When there is deviation or
uncertainty between the robot and the external environment, the force control will intelligently adjust
the preset position trajectory to eliminate the internal force caused by the position deviation and
ensure a smooth and safe interaction process

4.6.2Impedance control
Compared with traditional industrial robots, xMate collaborative robot is equipped with torque
sensors in its joints, which enable it to sense joint torque precisely. The joint torque information
allows the xMate collaborative robot to achieve force control through impedance, making the robot
have compliant interactive behaviors. This means the interaction between the robot and the
environment is like a virtual spring stiffness and damping system. At this point, the robot is sensitive
to external forces, which can cause the robot to deviate from a predetermined trajectory. When the
external forces disappear, the robot can rebound to some extent.

0 4Basic Knowledge of Robot

xCoreControl System User Manual 15

In the process of impedance motion, the actual position of the robot will deviate from the desired
position when affected by the external forces in the environment. The deviation depends on the
impedance stiffness and the external forces, and it can be calculated through the ratio between the
external force and the impedance stiffness. As shown above, in the impedance control mode, with
impedance stiffness set to K and under the action of external force Fext, the robot's current position
Pcur will deviate from the desired position Pdes, and the position deviation is Δx. The impedance
force caused by this deviation and the external force will eventually reach an equilibrium.
The impedance stiffness in each direction can be set individually, and the impedance force in each
direction is the product of the impedance stiffness and the position deviation in this direction. The
impedance forces in all directions are ultimately combined to form the total impedance force. In the
figure below, the robot's current position Pcur deviates from the desired position Pdes due to the
action of external forces in the impedance mode. In the X and Y directions, the deviations are Δxand
Δy, the impedance stiffnesses are Kx and Ky, and the impedance forces are Fx and Fy, respectively.
The total impedance force F = Fx + Fy.

4.6.3Force control search
When assembling work objects, humans can feel the change in force by hand. If an obstruction (a
work object is stuck) is detected, humans will try shaking to ensure a smooth installation. Force
control allows the robot to do the same thing, i.e. overlay. The robot supports sine overlay rotating
around an axis and Lissajous overlay within a plane. Overlay is an additional movement
superimposed on the robot's predetermined motion. Overlay allows the robot to exhibit a certain
degree of shake, enabling it to better overcome obstacles during assembly.
Below is a sine overlay:

0 4Basic Knowledge of Robot

16 xCoreControl System User Manual

1 Desired trajectory 2 Actual trajectory (desired trajectory +
overlay)

3 Overlay amplitude 4 Overlay period

Lissajous overlay refers to the application of sine search motions in two perpendicular directions
within a plane, and the frequencies of the two overlays are often proportional. For example, below
shows the Lissajous overlay in the XY plane, where the frequency ratio of x- and y-direction overlay
are 2:1. The center point Pstart is the desired pose, Xamp is the amplitude of the x-direction overlay,
and Yamp is the amplitude of the y-direction overlay.

4.6.4Force control application
The application scenarios of force control for industrial robots can roughly be divided into two
categories: constant force tracking and force-controlled assembly.

4.6.4.1Constant force tracking
Below is a constant force tracking scenario. The robot ensures a constant contact force Fdes with the
surface, while the robot can conform to the surface curve. Main applications of constant force
tracking include grinding and deburring.

4.6.4.2Force-controlled assembly
If pure position control is used during the assembly, the robot may easily collide with the work object
due to position and modeling errors, which can cause damage to the work object or the robot. But
with force control, the robot will try to overlay (shake) to overcome the obstruction when it senses an
external force over the limit (work object jamming), thus allowing smooth work object installation.
As shown below, the position control on the left results in a collision during assembly, while the force
control on the right pushes the robot into the assembly hole through the desired force Fdes, and the
jamming is prevented through overlay Foverlay.

0 4Basic Knowledge of Robot

xCoreControl System User Manual 17

0 5Robot System Structure and Connection

18 xCoreControl System User Manual

5Robot System Structure and Connection
5.1Introduction to this chapter

ROKAE has several series of robots. This chapter mainly introduces the system structure and
connection mode of different series of robots to deepen users' understanding of robot systems.
Users can optionally read the contents of this chapter based on the model they use.

5.2Control system structure
xCore control system is based on CS architecture, including HMI software (RobotAssist) and
controller software RC.

5.2.1xPad2 Teach Pendant introduction
The buttons and their functions of xPad2 Teach Pendant are described below.

0 5Robot System Structure and Connection

xCoreControl System User Manual 19

① Emergency stop button;
② Touch screen;
③ Physical buttons;
④ USB drive interface;
⑤ Connecting cable, for connecting with control cabinet or robot;
⑥ Three-position enabling switch;

5.3Industrial robot system composition
This chapter mainly introduces the structure, wiring, and power-on start-up methods of industrial
robots. There may be certain differences in the robot body and control cabinet depending on the
robot's specific model. For more information, please refer to the XBC5 Series Controller (xCore
System) Product Manual.
The main structure and wiring relations of an industrial robot system are shown in the figure below,
mainly including: robot body, Teach Pendant, control cabinet, relay cable, and power cord.

① Robot body;

② Teaching pendant;

③ Power cable;

④ Control cabinet;

⑤ Connecting cable, for connecting with control cabinet or robot;

5.3.1XBC5 series controller introduction
XBC5 series control cabinets include three models: XBC5, XBC5-E, XBC5-M.
Taking XBC5-M as an example, the main components and functions of the cabinet are briefly
introduced, to which other models are similar in components and functions.

① Security/Universal IO wiring terminals;
② Network interface: including debugging interface, EtherCAT expansion network

0 5Robot System Structure and Connection

20 xCoreControl System User Manual

interface, and visual interface;
③ Emergency stop switch: Used to control the motor's band-type brake in case of

emergency;
④ Power switch: Used to control the startup & shutdown of the robot;
⑤ Teach Pendant wiring port: Used to connect xPad2;

0 5Robot System Structure and Connection

xCoreControl System User Manual 21

5.3.2XBC5-M controller wiring, power-on, and start-up
Step Graphical Representation Explanation

1. Connect the robot
body with the
controller through the
relay cable;

As there is a difference
between the two ends of
the relay cable's
heavy-duty connector,
please confirm before
connecting.

2. Connect the Teach
Pendant with the
controller according
to the figure;

3. Connect the power
cord with the
controller;

The interface of the
power cord on the side of
the controller is designed
with a buckle.

4. Start up the control
cabinet after powering
it on.

After the power cord is
powered on and the
POWER button is
pressed, the xPad2 Teach
Pendant will
automatically start up.

① Robot body side loading plug;

② Trunk side load plug;

⑤

⑥

0 5Robot System Structure and Connection

22 xCoreControl System User Manual

③ Control cabinet side load plug;

④ Trunk side load plug;

⑤ Control cabinet side teaching pendant connection port;

⑥ Teach pendant side connection port;

⑦ Control cabinet side power cord connection port;

⑧ Power cord side connection port;

⑨ Power button;

5.3.3XBC5 controller wiring, power-on, and start-up
Step Graphical Representation Explanation

1. Connect the robot
body with the controller
through the relay cable;

The power cord
and relay cable on
the controller side
are designed as
integrated units
respectively,
eliminating the
need for additional
installation.

2. Connect the Teach
Pendant with the
controller according to
the figure;

3. Start up the control
cabinet after powering it
on.

After the power
cord is powered on
and the POWER
button is pressed,
the xPad2 Teach
Pendant will
automatically start
up.

① Robot body side loading plug;

② Trunk side load plug;

③ Teach pendant side connection port;

④ Power button;

0 5Robot System Structure and Connection

xCoreControl System User Manual 23

5.3.4XBC5-E controller wiring, power-on, and start-up

Step Graphical Representation Explanation

1. Connect the
robot body with
the controller
through the
relay cable;

The power cord
and relay cable on
the controller side
are designed as
integrated units
respectively,
eliminating the
need for additional
installation.

2. Connect the
Teach Pendant
with the
controller
according to the
figure;

3. Start up the
control cabinet
after powering
it on.

After the power
cord is powered
on and the
POWER button is
pressed, the xPad2
Teach Pendant
will automatically
start up.

5.4Collaborative robot system composition
5.4.1ER and ER PRO

ER and ER PRO series are designed without a controller, and their system composition is shown in
the figure below.
Attention: ER series robots do not support xPad2 Teach Pendant.

0 5Robot System Structure and Connection

24 xCoreControl System User Manual

① Robot body;

② Handheld enable;

③ Power cable;

④ Transformer;

⑤ Connecting cable, for connecting with control cabinet or robot;

For ER series robots, you can refer to the following steps for connection and power-on.
Step Graphical Representation Explanation

1. Connect the robot body with
the power adapter through the
relay cable;

0 5Robot System Structure and Connection

xCoreControl System User Manual 25

2. Connect the handheld
enabling device.

3. Connect the power cord.

4. Connect HMI.

As ER series robots
do not support
connecting Teach
Pendant, please
connect via PC. See
below for details.

5. Connect the power supply,
and press the power adapter
[switch] and the robot body
power supply [switch] in
sequence.

① Power adapter side trunk port;

② Robot body side trunk line port;

0 5Robot System Structure and Connection

26 xCoreControl System User Manual

③ Handheld enable port on the side of the robot body;

④ Power cord port on power adapter side;

⑤ Network cable port;

⑥ Power adapter switch;

⑦ Robot body switch;

5.4.2CR and SR
CR and SR series collaborative robots are designed without a controller, and their system
composition is shown in the figure below.

① Robot body;

② Teaching pendant;

③ Power cable;

④ Transformer;

⑤ Connecting cable, for connecting with control cabinet or robot;

For CR series robots, you can refer to the following steps for connection and power-on. SR series is
similar to CR series in connection and power-on.

0 5Robot System Structure and Connection

xCoreControl System User Manual 27

Step Graphical Representation Explanation

1. Connect the robot body
with the power adapter
through the relay cable;

2. Connect the Teach
Pendant;

3. Connect the power cord;

4. Connect the power
supply, and press the power
adapter [switch] and the
robot body power supply
[switch] in sequence.

After the robot is started
up, the Teach Pendant will
be automatically started
up.

0 5Robot System Structure and Connection

28 xCoreControl System User Manual

① Power adapter side trunk port;

② Robot body side trunk line port;

③ Handheld enable port on the side of the robot body;

④ Power cord port on power adapter side;

⑤ Power adapter switch;

⑥ Robot body switch;

5.4.3CR-C and SR-C
CR and SR series collaborative robots are designed with a controller, and their system composition is
shown in the figure below.

① Robot body;

② Teaching pendant;

③ Power cable;

④ Control cabinet;

⑤ Connecting cable, for connecting with control cabinet or robot;

5.4.3.1SR-C controller and its wiring, power-on and start-up

0 5Robot System Structure and Connection

xCoreControl System User Manual 29

① Security/Universal IO wiring terminals;
② Network interface: including debugging interface and visual interface;
③ POWER switch: Used to control the power on/off state of the robot;
④ Teach Pendant wiring port: used to connect xPad2.

Step Graphical Representation Explanation

1. Connect the robot body with
the controller through the relay
cable;

As there is a difference
between the two ends
of the relay cable's
heavy-duty connector,
please confirm before
connecting.

2. Connect the Teach Pendant
with the controller according to
the figure;

3. Connect the power cord with
the controller;

The interface of the
power cord on the side
of the controller is
designed with a
buckle.

0 5Robot System Structure and Connection

30 xCoreControl System User Manual

4. Start up the control cabinet
after powering it on.

After the power cord is
powered on and the
POWER button is
pressed, the xPad2
Teach Pendant will
automatically start up.

5.4.3.2CR-C controller and its wiring, power-on, and start-up

① Security/Universal IO wiring terminals;
② Realy cable interface: Used to connect the robot and controller;
③ Teach Pendant wiring port: Used to connect xPad2

0 5Robot System Structure and Connection

xCoreControl System User Manual 31

Step Graphical Representation Explanation

1. Connect the robot body with the
controller through the relay cable;

Note that the CR-C series
controller has two relay
cables: relay power cord
and relay signal cable.

2. Connect the Teach Pendant with
the controller according to the
figure;

3. Connect the power cord with the
controller;

The interface of the
power cord on the side of
the controller is designed
with a buckle.

4. Start up the control cabinet after
powering it on.

After the power cord is
powered on and the
POWER button is
pressed, the xPad2 Teach
Pendant will
automatically start up.

① Robot side relay power cord port;

② Robot side relay signal line interface;

③ Control cabinet side relay signal line port;

④ Control cabinet side relay power cord port;

⑤ Control cabinet side teaching pendant port;

⑥ Control cabinet side power cord port;

0 5Robot System Structure and Connection

32 xCoreControl System User Manual

⑦ Power switch;

5.5HMI and robot connection
Robot Assist, as the host computer software of the robot, can run on PC, xPad2, and other devices.
You can connect the device where the Robot Assist software is located and the robot to the same LAN
(local area network) and establish a connection with the connected robot by robot detection, manually
entering the controller service address, etc.

5.5.1xPad2 and robot connection
For the use of the Teach Pendant xPad2, the default network segment of the Teach Pendant is
192.168.1.X. You need to first modify the IP address of the Teach Pendant to be in the same network
segment as the robot body, and then connect the xPad2 to the corresponding port of the robot;

5.5.1.1Hardware connection

5.5.1.2Connection configuration
Model Introduction Picture

CR The xMate CR series robot xPad2
wiring port is located at the base.

CR-C

The xMate CR-C series robot
xPad2 wiring port is located on
the upper part of the control

cabinet.

SR The xMate SR series robot xPad2
wiring port is located at the base.

SR-C SR special controller (need to add
an adapter)

0 5Robot System Structure and Connection

xCoreControl System User Manual 33

XBC5
The XBC5 series controller

xPad2 wiring port is located at
the bottom of the controller.

XBC5-M
The XBC5-M series controller
xPad2 wiring port is located at
the bottom of the controller.

XBC5-E
The XBC5-E series controller
xPad2 wiring port is located at
the bottom of the controller.

After the hardware connection is completed and the robot is started up, xPad2 will be automatically
started up and start its built-in Robot Assist software.

5.5.2PC and robot connection
RobotAssist software can run on the PC, and then the PC can be connected with the robot or
controller.

5.5.2.1Hardware connection
5.5.2.2One-to-one HMI and robot connection

When using a PC on which Robot Assist is running to debug a robot, the PC can be directly
connected to the robot via network cable (table+illustration concretization);

Model Introduction Picture

ER/ER PRO

The xMate ER series cobot
features two Ethernet interfaces
on the base. The J2 port defaults
to the fixed IP address of
192.168.0.160.

CR

The xMate CR series cobot
features only one Ethernet
interface J1 (standard
configuration) on the base,
which defaults to the fixed IP
address of 192.168.2.160.

0 5Robot System Structure and Connection

34 xCoreControl System User Manual

CR-C xMate CR has a controller

SR xMate SR (J2 network interface)

SR-C

The xMate SR-C debugging
network interface is LAN2,
whose default IP address is
192.168. 0.160;

XBC5/XBC
5E

There are four Ethernet
interfaces from left to right on
the controller, which are:
 Debugging network

interface, whose default
configuration is the fixed
IP address of
192.168.0.160;

 EtherCAT device
expansion network
interface, used for slave
station extension;

 Visual network interface,
for connecting industrial
cameras, whose default
configuration is the fixed
IP address of
192.168.2.160;

 Bus extension network
interface (optional).

XBC5 M

LAN2 is the debugging network
interface of the XBC5 M
controller, and its IP address
defaults to 192.168.0.160;

5.5.2.3One-to-multiple HMI and robot connection
When switching between multiple robots, these robots can be connected to the same LAN, and the
PC on which Robot Assist is running will detect the robots available for connection on the same
network segment;

5.5.2.4Wireless connection

0 5Robot System Structure and Connection

xCoreControl System User Manual 35

For scenarios where a wired connection is not convenient (such as on AGVs), the robot can be
connected to a wireless router via the reserved network interface (the network interface on the xMate
cobot base; and the visual/debugging network interface of industrial robot controller) on the robot
controller and then to the HMID wirelessly.

5.5.2.5Connection configuration
5.5.2.6Direct cable connection

Both the robot base and the controller feature one network interface that defaults as the debugging
network interface with the fixed IP address of 192.168.0.160. This IP address is the same for all
robots and is not recommended to be modified arbitrarily. The PC on which Robot Assist is running
can be connected to the network interface directly via a network cable to control the robot.

5.5.2.7External network interface connection
External network interface connection supports two types of settings: obtain an IP address
automatically or assign a static IP address.
Obtain an IP address automatically — After the network interface J1 of cobots or the visual network
interface of industrial robots is set to DHCP mode, and the robot is connected via the network
interface to a router with DHCP, which automatically assigns an IP address to the robot, the robot can
then be detected and connected via robot detection.
Assign a static IP address — After the network interface J1 of cobots or the vision network interface
of industrial robots is set to the IP address in the required network segment, and the robot is
connected via the network interface to a router, the robot can be visited and controlled via the robot's
IP address.

5.5.2.7.1 Direct cable connection of devices such as PC
Both the robot base and the controller feature one network interface that defaults as the debugging
network interface with the fixed IP address of 192.168.0.160. This IP address is the same for all
robots and is not recommended to be modified arbitrarily. The PC on which Robot Assist is running
can be connected to the network interface directly via a network cable to control the robot.
When using a mobile device such as a PC to connect to a robot, it is necessary to ensure that the LAN
port address of the mobile device is in the same network segment as the robot. Regarding the
modification method of PC (win11) static IP and robot (CR series) connection, you can refer to the
following process steps:

Step Graphical Representation Explanation

1. Network cable and robot
connection. One end of the
network cable is connected to
the PC network interface, and
the other end is connected to the
robot network interface.

The default network
segment of the network
port at the side end of
the CR series robot
base is
"192.168.2.XX".

0 5Robot System Structure and Connection

36 xCoreControl System User Manual

2. Local static IP modification.
Enter the PC [Control Panel] ->
[Network and Internet] ->
[Network and Sharing Center]
-> [Change adapter settings] ->
Right-click to open the
corresponding network interface
[Properties] -> Double-click on
[Internet Protocol Version 4
(TCP/IPv4)] -> Modify the IP
address, subnet mask and
default gateway of the terminal
device (PC) and click [OK].

The IP address of the
terminal device (PC)
can be modified to any
IP address that is not
occupied in the same
network segment as the
robot, and its subnet
mask and default
gateway are consistent
with those of the robot.

0 5Robot System Structure and Connection

xCoreControl System User Manual 37

3. HMI and robot connection

5.5.2.7.2 Wireless connection of devices such as PC
After the network interface J1 of cobots or the visual network interface of industrial robots is set to
DHCP mode, and the robot is connected via the network interface to a router with DHCP, which
automatically assigns an IP address to the robot, the robot can then be detected and connected via
robot detection.

Step Graphical Representation Explanation

1. Modify the IP
property of the robot
system to dhcp.

See Chapter 6 for
details;

2. Connect the robot to
a router.

Set the network
interface J1 of cobots or
the visual network
interface of industrial
robots to DHCP mode,
and connect the robot
via the network
interface to a router
with DHCP, which
automatically assigns
an IP address to the
robot.

3. Connect the PC to the
router network in the
same network segment,
and set the IP
acquisition mode to
DHPC.

Enter the [Internet
Protocol Version 4
(TCP/IPv4)] page, and
refer to the part of Step
2 of the above manual
IP modification.

0 5Robot System Structure and Connection

38 xCoreControl System User Manual

4. Connect HMI to the
robot

5.5.2.7.3 IP address modification

Using the Windows 10 operating system as an example, connect one end of the Ethernet cable to the
robot's J2 interface and the other end to the terminal device (PC); click on the "Start > Control Panel"
menu on the terminal device (PC), and select "Network and Sharing Center" (the "Network and
Sharing Center" window will pop up); click on "Local Area Connection" in the "Network and Sharing
Center" window (the "Local Area Connection Status" interface will appear); click on "Properties" in
the "Local Area Connection Status" interface, (the "Local Area Connection Properties" interface will
appear); double-click on "Internet Protocol Version 4 (TCP/IPv4)" in the "Local Area Connection
Properties" interface, (the "Internet Protocol Version 4 (TCP/IPv4) Properties" interface will appear);
and select "Use the following IP address" in the "Internet Protocol Version 4 (TCP/IPv4) Properties"
interface, modify the IP address, subnet mask, and default gateway of the terminal device (PC), and
confirm the changes. (The IP address of the terminal device (PC) can be modified to any IP address
that is not occupied in the same network segment as the robot, and its subnet mask and default
gateway are consistent with those of the robot)

5.5.3Robot detection
and connection

HMI can detect and display all robots available on the same network segment for connection. You can
detect and connect robots by following these steps.

Step Graphical Representation Explanation

Warning

When manually modifying the IP address of the robot's network interfaces, do not set different
network interfaces as static IP addresses of the same network segment; do not arbitrarily modify
the network mode and IP address (192.168.0.160) of the debugging network interface; do not
arbitrarily modify the network mode and IP address (192.168.1.160) of the Teach Pendant xPad's
network adapter card.

0 5Robot System Structure and Connection

xCoreControl System User Manual 39

1. Search for available robots.

Click on the network icon
on the bottom status bar to
rapidly enter the robot search
interface, and click on [Search
Available Robot].

When searching for
robots, please make
sure the device on
which Robot Assist is
running and the robots
are on the same
network and the
network is connected.

2. Connect the robots. Enter the
IP address of the robots and
click on [Connect].

When the robots are
connected successfully,
[Controller Service]
and [Upgrade Service]
will display "Connected
to XXXX". The bottom
status bar icon changes

to . Simultaneous
connection of multiple
Robot Assist is not
supported. Another
Robot Assist can only
be connected after the
current Robot Assist is
confirmed to be
disconnected or the
robot is restarted.

0 5Robot System Structure and Connection

40 xCoreControl System User Manual

3. Disconnect the robots. Click
on the Disconnect button in the
Connection interface to
disconnect Robot Assist from
the controller.

The Robot Assist
connection can be
restored in the same
way it is connected for
the first time.

0 6HMI Introduction

xCoreControl System User Manual 41

6HMI Introduction
6.1Introduction to this chapter

This chapter outlines the basic layout of xCore's HMI software and the distribution and role of its
main functions.
Users need to read this chapter before actually using the robot.

6.2RobotAssist introduction
RobotAssist is the host computer software of the xCore control system, with functions including
robot motion control, task editing, parameter setting, and status monitoring. The software can be
installed on PC, Surface, and xPad2 Teach Pendant. The devices can control a robot after being
connected to it as long as they are in the same network segment as the robot.
When you use the xPad 2, if the teach pendant encounters a crash or blue screen issue, the
RobotAssist software will automatically restart to resume operation. (Please note that this auto-restart
feature is not applicable to the PC side.)
Besides xPad2, we suggest using a tablet or a laptop as the operating terminal. The recommended
configurations are shown in the table below.
Terminal type Tablet Terminal type Laptop

ROM 32 GB ROM 32 GB

RAM 4 GB RAM 4 GB

Screen size 8.0 inches and
above GPU Intel HD Graphics 4000 or higher

Network
communication Wi-Fi

Network

communication
Wi-Fi or wired LAN

Operating system Windows 7 64 bit, Windows 10 64 bit, Ubuntu20.04
CPU Intel Core I3 and above

Note

Robot Assist interacts with the controller in real time. When it is used on a PC, frequent changes in
window size may cause the interface to stop refreshing. In this case, you can restore it by pressing
Alt+Tab to switch between windows.

6.3General layout of HMI
The main operation interface is usually composed of 4 main areas, including: top status bar, bottom
status bar, left sidebar, and right operation interface.

0 6HMI Introduction

42 xCoreControl System User Manual

① Top status bar
② Left sidebar
③ Right operation interface
④ Bottom status bar

6.3.1Top status bar
Top status bar, including: several first-level menu buttons (programming, settings, communication,
safety, process package, log, options), instant log, clear alarm button, tool information button, work
object information button, status monitoring button, RSC reset button, security check button, and
operation interface button.

①
First-level menu buttons, including programming, settings, communication, safety, process
package, log, and options. Click one of the above buttons to go to the corresponding
sub-interface;

②
Instant log, showing the latest controller log information of the system. Click it to go to
the controller log sub-interface;

③ Clear alarm button. Click it to clear the alarm status of the instant log and the controller;

④
Tool selection button, displaying the information of the tool used currently. Click it to
select the tool to be used;

⑤
Work object button, displaying the information of the work object used currently. Click it
to select the work object to be used;

⑥ Status monitoring interface button. Click it to open/close the status monitoring interface;

⑦

Emergency stop reset button (available only on robots that are equipped with a safety
controller). When the robot is in an emergency stop, safety gate open, or safety stop state,
after eliminating the factors that cause the above states, clicking this button can restore the
robot to its normal operating state;

⑧
Security checksum, used to check the five pages involved in security: soft limit, virtual
wall, collision detection, security monitor, and collaboration mode. When the five types of
settings change, this page will pop up for reconfirmation;

⑨ Operation interface button. Click it to open/close the operation interface;

6.3.2Left sidebar
When switching between different functions through the top status bar, such as programming, settings,
and communication, the left sidebar will display the corresponding submenu items for each function.

After clicking "Settings" on the top status bar,
the left sidebar displays all the "Settings"
submenu items.

After clicking "Body Parameters", the "Body
Parameters" setting page is accessed.

0 6HMI Introduction

xCoreControl System User Manual 43

After clicking "Communication" on the top
status bar, the left sidebar displays all the
"Communication" submenu items.

After clicking "Settings" on the top status bar
again, the left sidebar displays all "Settings"
submenu items, and the middle interface
displays the "Body Parameters" page accessed
last time by default.

6.3.3Right operation interface

You can click or on the top status bar to open the operation interface, which can be used to
change the robot control mode, control robot motion, and perform pose teaching.
The robot supports two types of pose teaching: Jog mode and Drag mode (for cobots only). Jog mode,
in which the robot is controlled to move in the corresponding direction through the Jog button. Drag
mode, in which the robot motion is directly and manually guided by using the end-effector drag
Pilot/xPanel handle.

0 6HMI Introduction

44 xCoreControl System User Manual

Operation interface of 7-axis robots Operation interface of 6-axis or below robots
① Drag settings zone, indicating that ②, ③, and ④ are drag-related options.
② Drag space setting: joint space drag and Cartesian space drag.
③ Drag enabling switch: turn on/off Drag mode.

④
Drag mode setting: For joint space drag, only free drag is available. For Cartesian
space drag, the three options of translational drag only, rotational drag only, and
free drag are available.

⑤ Jog settings zone, indicating that ⑥, ⑦, and ⑧ are Jog-related options.

⑥

Jog reference system setting. It is used to select the single axis mode and
Cartesian mode during Jog, as well as the reference frame in Cartesian mode,
including: world frame, base frame, flange frame, tool frame, and work object
frame.

⑦
Jog speed setting. Set the robot Jog speed between 1% and 100% (expressed in a
percentage relative to the top Jog speed limit of 250 mm/s).

⑧
Jog step mode setting. Set Jog mode to Continuous Jog or Stepping Jog, and the
stepping increment can be adjusted.

⑨,⑭ Switch function area. Switch between the Jog button and buttons⑪,⑫, and⑬.

⑩

Jog button. For a 7-axis robot, J1 to J7 are displayed in the case of joint space Jog
and X/Y/Z/A/B/C and Elbow in the case of Cartesian space Jog. For a 6-axis
robot, J1 to J6 are displayed in the case of joint space Jog and X/Y/Z/A/B/C in the
case of Cartesian space Jog.

⑪ Program start/stop button.
⑫ Previous (not supported yet)/next program running buttons.

⑬

Shortcut button area. It allows you to configure the shortcut functions of the
buttons in the custom button interface. The default configuration includes four
buttons: Initial Pose, Drag Pose, Shipping Pose, and User Pose.
For a more detailed introduction, you can refer to the section, "Settings"-"Quick
adjustment".

Note

It is important to make sure that the robot is currently in manual mode and powered off before
performing Jog and turning on the Drag enabling switch.
It is not allowed to start the program when the register with the pause function or system IO has
not been reset.

6.3.4Bottom status bar
The bottom status bar displays the connection status between Robot Assist and the robot, program
running speed, robot operating mode, robot status, motor status, current user login information, and
robot model.

0 6HMI Introduction

xCoreControl System User Manual 45

①

Connection status between the RobotAssist software and the robot. Click this button to

open the connection setting page of the robot. The icon means disconnected, and the

icon means connected. The animation icon means that an attempt is being made

to connect to the robot. The icon is the state where the upgrade service is connected
and the controller service is not connected, and in this state, the control system upgrade
operation can be carried out, while the robot cannot be operated and the robot parameters
cannot be set.

②

Program running speed adjustment control, used to adjust the RL program running speed,
with an adjustable range of 1%−100%. This parameter independently affects the program
running speed in both manual and automatic modes. The program speed (-/+1%) can be
fine-tuned by using the slider or clicking buttons "-/+".
Attention: The upper limit of program speed may be affected by "Upper limit of program
speed in manual mode" and "Upper limit of initial speed of program in automatic mode"
in "Advanced Settings" of "Controller Settings". You can refer to the relevant chapters for
more information.

③

Robot operating mode is divided into manual and automatic modes, which are described in
more detail in the chapter "Basic Operation of the Control System".

Manual mode, in which users usually write and debug programs.

Automatic mode, in which users usually carry out continuous automatic production.

④

Robot state, including the following specific states.
, Idle state. The program is stopped, and the robot is not in motion.

, Program running state. The program is running, and the button turns red when the
robot is in motion.
, Drag mode. The robot can be dragged when the controller is in Drag mode. The
button turns red when the robot is in motion.
, Demo mode. The controller plays the Demo when it is in Demo mode. The button
turns red when the robot is in motion.
, Identification mode. The controller is in Identification mode, and the button turns
red when the robot is in motion.
, Jog mode. The controller is in Jog mode and changes when the Jog button is
pressed or released.
, RCI mode. The controller is in RCI mode, and the button turns red when the robot
is in motion.
, Collaboration mode. The controller is in Collaboration mode, which is displayed in
combination with other statuses in the upper right corner of the icon.
, Error state. The robot system is in Error state.

, Debug mode. The controller is in Debug mode, and the button turns red when the
robot is in motion.

⑤
Project semi-static state. The button is displayed when the robot is in the semi-static
task running state; otherwise, it is not displayed. Click this button to stop the

semi-static task.

⑥

, Power-on state. The robot motor is in the power-on state. Click this button to
power it off.
, Power-off state. The robot motor is in the power-off state. Click this button to
power it on.
, Emergency stop state. The robot is in the emergency stop state, and the robot
motor cannot be powered on.
, Safety gate state. The safety gate is open, and the robot motor cannot be powered
on.
, Safe stop state (for only models equipped with a safety controller). The robot is in
a safe stop state, which means that the safety controller detects that the work or

communication is abnormal, or a parameter exceeds the safety threshold set by the safety
controller, and the robot cannot be powered on.

⑦
Current login user information: Operator, Teacher, Programmer, Admin, and System. Click
the button to go to the user login interface.

⑧ Robot model information.

6.4Status monitoring
Click the "Status Monitoring" button on the top status bar to open the floating status monitoring
interface. Through the status monitoring interface, the following items can be monitored: robot 3D
model, task running status, IO signal, network connection status, register variables, conveyor belt

0 6HMI Introduction

46 xCoreControl System User Manual

status, and PERS variable information, which is convenient for users to quickly understand the robot
status.

6.4.13D model monitoring
The interface visually displays the current state of the robot in the form of a 3D model. The 3D
model's viewpoint can be switched by clicking and dragging, and the model can return to the default
viewpoint by clicking the "Front view" button.

①
Frame switching: selectable base frame/world frame/work object frame. The base frame
may not coincide with the world frame when the robot is not installed upright or when a
group of robots is used.

② Front view: Click the "Front view" button to return the model to the default viewpoint.
③ End-effector pose: The position and orientation (RPY or quaternion) of the robot

end-effector relative to a certain frame (work object frame, base frame, and world
frame).

④ Joint angle, joint torque, and external axis information.

Note

At present, only RobotAssist on PC supports 3D model display, and only status data can be displayed
on xPad2.

6.4.2Task monitoring
This interface displays the task name, task type, and running status of each task in the current project.

6.4.3IO signal monitoring
For xMate cobots, the IO signal monitoring interface displays the 4-channel DI and DO signals on the
robot base and the 2-channel DI and DO signals at the end-effector by default.
For industrial robots, the IO signal monitoring interface displays configured IO signals in the
controller by default.

0 6HMI Introduction

xCoreControl System User Manual 47

① Filter, used to filter the displayed IO. The selectable filter conditions include category, IO
board, signal type, and name. Click the "Reset" button to reset the filter conditions

② IO signal list
③ Open IO Simulation mode to simulate DI signal value

Operating steps of IO Simulation mode:
Step Graphical Representation Explanation

1. Go to the IO Signal page
and click the [IO
Simulation Mode] enabling
switch to activate
Simulation mode.

The Simulation mode has
access restrictions and
requires Operator-level or
higher permissions for use.

2. Click the DI/DO value
buttons to start the
simulation.

Note that even not in the
Simulation mode, DO can
also be forced to output.

6.4.4Network connection monitoring
This interface displays the network information that is currently connected with the controller,
including: name, type, IP, port, and status.

0 6HMI Introduction

48 xCoreControl System User Manual

①
Name: MODBUS, RCI, and SYS_SOCKET are system default unique names. User-defined
names are displayed for new connections.

②
Type: The connection status of MODBUS, RCI, and SOCKET can be displayed.
Corresponding connections can be added and configured in the relevant interface.
SYS_SOCKET refers specifically to the connection of external communication.

③
IP: For a client-side connection, the IP address of the target server is displayed. For a
server-side connection, its own IP address is displayed.

④
Port: For a client-side connection, the port number of the target server is displayed. For a
server-side connection, its own port number is displayed.

⑤
Status: Generally, there are three types of connection status: Connected, Disconnected, and
Connecting. For a server-side connection, it displays Monitoring when it is disconnected.

6.4.5Register monitoring
This interface displays the information of each register. If you think that there are too many registers
displayed by default, you can filter them. The selectable filter conditions include: device, type,
read-write, name, and description. Click the "Reset" button to update them.

① Filter: Used to filter the displayed registers.
② Register signal list.

Step Graphical Representation Explanation

Write-only register
assignment: Select the
write-only register, enter
the expected value in the
input box to the left of
the "Write" button, and
click the "Write" button
to change the current
value of the register.

1. Users with the
permission level of
Operator are not allowed to
perform writing;
2. Only write-only registers
and registers that are not
bound with function codes
can be assigned.

0 6HMI Introduction

xCoreControl System User Manual 49

Read-only register
assignment: Enable the
"write-only register
stimulation mode", enter
the expected value in the
input box to the left of
the "Write" button, and
click the "Write" button
to change the current
value of the register.

6.4.6Conveyor belt monitoring
Used to cooperate with the conveyor belt process package and monitor the status of conveyor belt.
See the conveyor belt tracking process package for details.

6.4.7Variable monitoring
This interface displays the real-time information of variables listed in the variable list.

①
Filter: Filter according to class insertion type and name filter. Note: Currently, variable
monitoring supports only the monitoring of individual variables or arrays of the
following types: bool, int, double, byte, and string.

② Monitor the variable list.
③ Previous/Next: Only up to 10 variables can be monitored per page.
④ Write button: Assign the variables.

0 6HMI Introduction

50 xCoreControl System User Manual

Step Graphical Representation Explanation

1. In the variable
monitoring selection
interface, add variables
to be monitored using
the "Batch Add" button
or the "Single Add"
button.

Variable monitoring only
monitors variables that
exist in the selection
interface

2. Write: In the
"Modified Value"
column, write the value
of the variable to be
modified, and click
"Write" button to write
the value to the variable
in real time.

Users with the permission
level of Operator are not
allowed to perform
writing. When modifying a
non-PERS variable,
clicking "PPTOMAIN"
will revert the changed
value of the non-PERS
variable to its original
state.

Note: After adding a new variable to be monitored, you need to first execute the "PPTOMAIN"
operation before you can read or modify the variable.

6.5Programming module overview
RL editor Mainly used for writing and debugging RL programs.
Project

configuration
Used for operations such as project creating, loading, import and export, and
push.

Custom
production

Users can customize several controls to conveniently monitor and edit
registers, DI/DO signals, and project variables.

Task list Used for viewing, creating, editing, and importing and exporting tasks.
List of variables Used for viewing, creating, editing, and importing and exporting variables.

Point list Used for viewing, creating, editing, and importing and exporting points.
Path list Used for viewing, creating, editing, and importing and exporting paths.

IO signal list Used for viewing, creating, editing, and importing and exporting IO signals.

User frame list Used for viewing, creating, editing, and importing and exporting user
frames.

Tool list Used for viewing, creating, editing, and importing and exporting tool frames.

Work object list Used for viewing, creating, editing, and importing and exporting work object
frames.

Variable
monitoring

selection interface

In the variable monitoring selection interface of status, you can perform the
following operations on monitored variables: import, export, batch add,
single add, and deletion.

6.6Setting module overview
Controller settings Controller system-related setting interface, including robot type, system

time, and system IP.

HMI settings HMI-related settings, including language switching and Teach Pendant IP
settings.

User group User management, including login and password management.

Calibration Perform robot zero calibration, force sensor calibration, soft calibration, and
base frame calibration

Frame calibration Set the global tool, global work object, and global user frames.
Dynamic settings Robot dynamics-related settings.
Body parameters Robot kinematics-related settings, such as RD parameters, reduction ratio,

0 6HMI Introduction

xCoreControl System User Manual 51

and overload coefficient.

Motion parameters Acceleration and deceleration performance, safety control, and other settings
for the robot.

Force control
parameters

Force control-related settings for the robot.

Quick adjustment Quick orientation adjustment settings.
Electronic
nameplate

Electronic nameplate-related settings. (This function is only supported by
some models)

Error code alarm
filtering

Error code alarm filtering-related settings.

Custom buttons Custom button binding functionality.

6.7Communication module overview
System IO System input and system output signal settings.
External

communication
External communication interface settings based on the Socket.

Register Register-related settings.
IO device IO device settings.
Bus devices Configure various bus expansion modules.
RCI settings RCI communication settings.
xPanel settings CR robot xPanel settings.
Electric gripper
and suction cup

Settings and tests of all kinds of electric grippers and suction cups.

Serial port settings Serial port-related settings.
Encoder Encoder settings required for conveyor belt tracking function.
OPC-UA OPC-UA-related settings.

6.8Safety module overview
Joint limit Robot joint limit settings.
Robot limits Robot speed, reduced mode speed, power, and momentum settings.
Virtual wall Virtual wall-related settings.

Collision detection Collision detection-related settings.
Safe region Safe region-related settings.

Safety position Safety position-related settings.
Safety DO settings Safety DO-related settings.

6.9Process package module overview
Support stacking, tray, conveyor belt tracking, PV typesetting, PV inserting, and other process
packages. Please refer to the corresponding chapters.

6.10Log module overview
HMI logs Display the current operation interface log information.

Controller logs Display the running log of the controller connected to the robot.
Operation logs Display logs related to robot operation.
Log timeline Display the log history visually through a timeline.

Internal logs Used to display the underlying log information of the Teach Pendant or
RobotAssist.

Diagnostic setting Used to assist developers in problem diagnosis.

Hardware status Add display of health monitoring information for the IPC and teach
pendant.

Diagnostic data
monitoring

Supported only on the PC HMI; this feature allows the use of condition
verification function. It is unavailable on the teach pendant.

6.11Option module overview
Connect RobotAssist software and controller connection, related operations and

settings.
About ROKAE Version information and company profile.
Software upgrade Control system software upgrade and backup related operations.

Export Control system configuration export.
Import Control system configuration import.

File manager Several folders involved in the RobotAssist software.

0 6HMI Introduction

52 xCoreControl System User Manual

Demos Demonstration of some features.

0 7Basic Operation of the Control System

xCoreControl System User Manual 53

7Basic Operation of the Control System
7.1Introduction to this chapter

This chapter provides an overview of the most commonly used basic and requisite operations for
robots.
Users need to read this chapter before actually using the robot.

7.2Operating mode
Robot operating mode includes manual mode and automatic mode.

7.2.1Switch manual
The manual mode is mainly used for robot programming and debugging. In manual mode, all robot
motions are controlled manually by the user, and the robot will power on the motor and respond to
the motion commands only when its motion is enabled (the three-position switch is in the middle
position).

The manual mode is typically used to execute the following tasks:
 Jog the robot back close to the path after an emergency stop to continue running the program;
 Create and write RL programs;
 Debug the RL program, including but not limited to start, stop, single-step run, and program

position update;
 Set control system parameters and calibrate frames;
 View and modify variables;

7.2.2Switch auto
The automatic mode is used for continuous automated production, in which the three-position
enabling switch will be bypassed and the robot can work normally without manual intervention.
When the robot is in automatic mode, the system IO signals, etc. can be used to control the robot and
obtain the robot's operating status.

The automatic mode is typically used to execute the following tasks:
 Load, start, and stop the RL program;
 Return to the original programming path after an emergency stop;
 Back up the system;
 Clean the tools (as per the process requirements);
 Machine and process the work objects;

The usage restrictions in automatic mode include but are not limited to:
 Not allowed to Jog.
 Not allowed to modify configuration files, configure the number of IO boards, or set the robot

installation method.
 Not allowed to restore the backup.
 Not allowed to grant function authorization.
 Not allowed to set soft limits.
 Not allowed to create, modify, and delete IO.
 Not allowed to perform parameter identification.
 Not allowed to turn on/off collision detection.
 Not allowed to turn on/off collaboration mode.
 Not allowed to turn on/off drag teaching in automatic mode.
 Not allowed to perform calibration.
 Not allowed to create new variables.
 Not allowed to update or restore to factory settings.

7.2.3Mode confirmation and switching
You can learn about the current mode of the control system by checking the mode icon on the bottom
status bar of the HMI software.

The controller is in manual mode.
The controller is in automatic mode.

Users can switch between different operating modes by clicking the mode icon in the HMI interface.
Before switching, a dialog box will pop up for confirmation, and if you click "OK", the system will
switch the operating mode; and if you click "Cancel", the switching will be canceled.

0 7Basic Operation of the Control System

54 xCoreControl System User Manual

Attention: For safety, when switching modes, the system will cut off the power supply. If the system
is executing the RL program and the robot is in motion, the system will trigger STOP 1 to stop.

7.2.3.1Switching from manual mode to automatic mode
When operators need to verify the programs at all states and speeds, or when the programs are ready
for full production, the system can be switched to automatic mode.
You can switch from manual mode to automatic mode in the following ways.

Way I

HMI button: Click the operating mode icon on the HMI interface to
switch from manual mode to automatic mode. Before switching, a dialog box
will pop up for confirmation, and if you click "OK", the system will switch the
operating mode; and if you click "Cancel", the switching will be canceled.

Way II System IO: "automatic mode".
Way III External communication: "switch_mode:auto"+"\r".
Way IV Register function code: ctrl_switch_operation_auto_manual.
Way V SDK.

DANGER

In automatic mode, the robot may be triggered to move by an external signal without any warning.
Before switching to automatic mode, it is necessary to make sure that collision detection is
enabled to prevent personal injury from accidental collisions between the robot and personnel!

7.2.3.2Switching from automatic mode to manual mode
You can switch from automatic mode to manual mode in the following ways.

Way I

HMI button: Click the operating mode icon on the HMI interface to
switch from automatic mode to manual mode. Before switching, a dialog box
will pop up for confirmation, and if you click "OK", the system will switch the
operating mode; and if you click "Cancel", the switching will be canceled.

Way II System IO: "manual mode".
Way III External communication: "switch_mode:manual"+"\r".
Way IV Register function code: ctrl_switch_operation_auto_manual.
Way V SDK.

7.3Power on and off
Please first read the introduction to enabling devices in Safety devices, Chapter 2.

7.3.1Motor on
In manual mode, the user can power on the motor by pressing the yellow three-position enabling
switch on the handheld enabling device and holding it in the middle position. You can judge whether
the power-on is successful by listening to the power-on sound of the robot or observing that the
power-on button on the bottom status bar on the HMI software interface turns red.

Note

If the power-on fails, observe the real-time log to determine the robot's status at this time and
switch the robot to a state that supports power-on before trying again.
In automatic mode, click the power-on button on the bottom status bar on the HMI software to power
on the motor. The method to determine whether the motor is properly powered on in this mode is the
same as that in manual mode.

7.3.2Motor off

0 7Basic Operation of the Control System

xCoreControl System User Manual 55

In manual mode, the user can power off the motor by releasing or pressing the yellow three-position
enabling switch all the way down to keep it in Position 1 or Position 3.
In automatic mode, click the power-off button on the bottom status bar of the Robot Assist interface
to power off the motor.

Warning

In case of emergency, press the emergency stop button on the manual enabling device for
emergency robot power-off. When the robot needs to be powered on again, please reset the
emergency stop switch manually.

7.4Motion control
7.4.1Jog

Jog supports multiple frames/modes, as shown in the table below.
Explanation Remarks

World frame
Cartesian space Jog, moving in the direction of a given
frame. For example, if you select "world frame", Jog X, the
robot will move in the X direction of the world frame; and if
you select "tool frame", Jog B, the robot will rotate in the Y
direction of the tool frame.

Flange
frame

Base frame
Tool frame
Work object

frame

Singularity
avoidance

It is mainly used to avoid wrist singularities during Cartesian
Jog, and all its XYZ motions are relative to the base frame.
It is necessary to Jog Axis 4 to 0° or ±180° before performing
Cartesian XYZ Jog. Using J4 in this mode can quickly Jog
Axis 4 to the above angle. Based on this, Axis 4 angle will be
locked and no longer change for Jog XYZ, and the robot's
orientation changes along with the arm plane rotation. During
Jog Ry, the flange of the robot rotates around the normal
direction of the plane formed by the upper and lower arms.
(Jog Ry can only be performed when the Axis 4 angle is 0° or
±180°). The Jog J6 is the same as the Jog Axis 6 in joint
space, and only Axis 6 is adjusted.
The base frame jog of CR series 5-axis robots corresponds to
the singularity avoidance mode of 6-axis collaborative robots,
that is, during Jog X/Y/Z, the orientation of the robot will
change along with the arm plane rotation. During Jog Ry, the
robot flange will rotate around the normal of the arm plane.
Jog J5 is the same as Jog Axis 5 in joint space.
Note: When full DH compensation is enabled, singularity
avoidance cannot be achieved. It is recommended to use this
feature with full DH compensation disabled.

You need to first
turn on the
"Stacking
Debugging
Mode" on the
"Advanced
Settings" page
under "Motion
Parameters" of
"Settings". The
current version is
applicable to
robot models:
industrial
standard six-axis
series (XB, NB
models) and
xMate CR/SR
collaborative
series.

Parallel base

It is mainly used to avoid wrist singularities during Cartesian
Jog, and all its XYZ motions are relative to the base frame.
It is necessary to first Jog the flange in a state parallel to the
base before performing Cartesian XYZ Jog. Using J4 and Ry
in this mode can quickly make the flange reach a state
parallel to the base. During Jog XYZ, the robot's orientation
does not change, but the singularities of the robot's wrist can
be automatically avoided. The usage of J4, Ry, and J6 in this
mode is consistent with that in the singularity avoidance
mode.
CR Series 5-axis robots use Ry in this mode to quickly make
the flange parallel to the base.
Note: When full DH compensation is enabled, singularity
avoidance cannot be achieved during jogZ.

Joint space Each axis movement is controlled individually.

Note

Due to the configuration limitation of the xMate series 5-axis robots, when Jog xyz is performed in
the ordinary frame, the robot's orientation will change along with the arm plane rotation. During
Jog A, the robot flange will rotate around the normal of the arm plane. Jog B is the same as Jog

0 7Basic Operation of the Control System

56 xCoreControl System User Manual

Axis 5 in joint space. The C button is invalid.

Jog supports two modes: continuous and stepping:
 In continuous Jog mode, when the robot is powered on and the jog button is held down, the

robot will move continuously at the set Jog velocity until either the enabling switch or the Jog
button is released.

 In stepping Jog mode, after the robot is powered on, every time the Jog button is pressed, the
robot moves for a given step length. Users can choose the appropriate step length according to
their needs, which is mainly for accurately adjusting the pose of the robot.

Jog speed setting:
Jog speed can be set to control the robot motion speed during Jog, with the speed range from 0.1% to
100% (100% corresponds to the robot's top TCP speed of 250 mm/s). Subject to safety regulations,
the TCP linear speed in both Cartesian space Jog and joint space Jog shall not exceed 250mm/s.

7.4.1.1Jog low-speed mode
To facilitate users' fine adjustment of motion points, in the Continuous Jog mode, if the Jog speed is
configured to 1% or below, the robot will enter Jog low-speed mode.
In this mode, the robot's motion speed will be locked at 20%, while the step length for single Jog
clicks will follow the table below.

Jog Speed Joint Space JOG Cartesian JOG
1% 1.0° 1.0 mm
0.5% 0.5° 0.5 mm
0.1% 0.1° 0.1 mm

7.4.2Quick adjustment
The right operation interface of the HMI provides a quick pose adjustment function. The supported
quick pose adjustments include: Initial Pose, Drag Pose, Shipping Pose, and Home Pose.
The quick pose adjustment is available in manual mode in a way similar to Jog operation. In manual
mode, the robot is powered on via the enabling switch. When the button for the corresponding target
pose is pressed, the robot will move to the target pose in the joint space. The motion speed can be
adjusted via the Jog speed.
Drag Pose, Shipping Pose, and Home Pose support user customization, which can be set on the
"Quick Adjustment" page under the "Settings". If their parameters are not set, their default
configuration is used.

7.4.3Drag
During point teaching, the programming time can be greatly shortened by dragging and positioning;
Robot dragging, combined with trajectory recording and trajectory reproduction, can simplify the
difficulty of teaching in some continuous trajectory scenes.
Please refer to the Appendix for the introduction and usage examples of the end-effector handles of
each collaborative robot model.

Attention: The Drag Mode and its extended functions (end-effector handle, point teaching,
continuous trajectory teaching, and trajectory reproduction) are only available for xMate series
cobots.

Drag mode Type Explanation

Joint space Each axis moves independently and can be directly adjusted to
reach the desired pose;

Cartesian
space

Translational
drag only

The robot can be guided to translate along all directions of
Cartesian space;

Rotational
drag only The robot can be directly guided manually to rotate around TCP;

Free drag Translation and rotation are supported in Cartesian space;

When the robot is in manual mode and powered off, turn on the drag enabling switch on the operation
interface, the robot is powered on automatically and enables Drag Mode. Press the enabling button on

Note

In stepping Jog mode, it is necessary to hold down the Jog button and wait until the robot moves
for the specified step length before releasing the Jog button. A short press can make the robot stop
moving in advance.

0 7Basic Operation of the Control System

xCoreControl System User Manual 57

the end-effector drag handle simultaneously to drag the robot for point teaching and trajectory
recording.

Note

The appropriate drag way and drag space are set before the Drag Mode is enabled. After Drag
Mode is enabled, the robot will be powered on automatically. In this case, the drag mode and drag
space cannot be set, and you need to turn off Drag Mode before setting them.

Warning

Before enabling Drag Mode, please make sure the robot's dynamic parameters and load parameters
are set accurately. Otherwise, enabling Drag Mode may fail, or the robot may float during
dragging.
Set the parameters using the dynamic parameter identification function and the load identification
function provided by the system.

DANGER

The following parameters must be set correctly before the drag teaching is used, otherwise, when
the angle of each axis is in the wrong state, the controller cannot calculate the correct output
torque, and the robot drag function cannot be used normally.
 Robot model.
 Robot installation method: floor mounting or ceiling mounting.
 Dynamic parameters of the robot and its load.
 Mechanical zero calibration.

7.5Continuous trajectory playback
After a successful continuous trajectory teaching, playback the recorded trajectory on the recording
interface and confirm, and then save it manually after confirmation.
Check Loop in the playback mode for looped playback.
The playback rate can be set between 1% and 300%. It is recommended that users set the playback
rate in the range of 1% to 100%. When the playback rate is greater than 100%, a following error of
the drive may occur.
For operation examples, refer to the section below, "Programming"-"Path list".

7.6Operation example I: Industrial robots realize Jog motion
Before the real robot operation, it is necessary to ensure that the HMI is connected to the robot and
both are powered on and operating normally. (see Chapter 5 for details).

Step Graphical Representation Explanation

1. Check robot status.
Ensure that the robot is
normally connected and
is in manual mode;

0 7Basic Operation of the Control System

58 xCoreControl System User Manual

2. Switch login user.

3. Select [Base Frame]
as the Motion Frame.
The specific frames are
detailed in Chapter 4.
Also, choose
[Continuous Motion].

The movement
direction of the
manipulator
end-effector is the same
as the direction of the
base frame.

4. Hold the enabling
switch of the Teach
Pendant.

When the manual
power-on is successful,
there will be an obvious
power-on sound, and
the robot status bar will
show that the robot is in
the manual power-on
state. During jog, it is
necessary to keep the
enable switch pressed.

5. Jog the robot. Click
on the teach pendant to
select the desired
direction for movement.
This example
demonstrates moving in
the positive X-direction
of the base frame.

In continuous jog
mode, it is necessary to
ensure that the motion
button remains pressed.
Once the motion button
is released, the robot
will stop moving.

6. Turn off Jog. Release
the robot motion button,
and release the enabling
button.

After the manual
power-off, the robot
status bar will show
that the robot is in the
manual power-off state.

0 7Basic Operation of the Control System

xCoreControl System User Manual 59

7.7Operation example II: CR collaborative robots realize drag
Before the real robot operation, it is necessary to ensure that the HMI is connected to the robot and
both are powered on and operating normally. (see Chapter 5 for details).
This section demonstrates the drag function of collaborative robots mainly based on the xMate CR7
collaborative robot.

Step Graphical Representation Explanation

1. Check robot status. Ensure
that the robot is normally
connected and is in manual
mode;

Make the robot in Drag
Pose as much as
possible. Make sure
that the drag button is
set to the non-selectable
state when the robot is
in automatic mode.

2. Switch login user.

3. Click [Drag] button. The drag
button will show that the drag
button is activated, the robot
status bar will show that the
robot is in Drag mode, and the
robot will make an obvious
power-on sound;

0 7Basic Operation of the Control System

60 xCoreControl System User Manual

4. Press and hold the drag
enabling switch of the robot to
drag the robot to any position in
the robot's workspace;

During drag, hold down
the drag button to
perform drag operation.

5. Release the robot drag
enabling switch and click the
[Drag] button. The drag button
will show that the drag button is
turned off, the robot status bar
will show that the robot is in
manual power-off mode, and
the robot will make an obvious
power-off sound.

Other operations are
allowed only after the
drag state is exited.

0 8Programming

xCoreControl System User Manual 61

8Programming
8.1Introduction to this chapter

Industrial/collaborative robots are highly flexible production tools that can be programmed by users
to meet different needs.
This chapter will introduce all aspects of programming the xCore control system.
Starting with this chapter, users will gradually gain an in-depth understanding of advanced use
methods such as xCore programming, setting, and communication.

8.2Introduction to project
xCore manages users' programming on a project basis. A typical project includes RL program, custom
user interface, tasks, variables, points, paths, IO, user frame, tool frame, and work object frame.

It is divided into four levels according to the range size:

Project Project

The highest level, including various information. A project can contain
multiple tasks, each of which is independent and interacts with each
other only by the interfaces provided;
The robot can only select and execute one project at a time;

Task Task

A task can contain multiple program modules, but there is only 1
main.mod;
In the main.mod, there is a GLOBAL PROC main, which serves as the
entry function for the entire project.
Loading and executing a project is essentially executing the main
function;

Module Module

It is divided into program module (.mod) and system module (.sys),
and a module is a program file;
Each program module contains certain data variables and functions,
which are used to realize specific robot functions;
Routine operations such as copying and deleting can be performed for
each program file;
The module is defined as:
PROC main()
…
ENDPROC

PROC test1()
…
ENDPROC

PROC test2()
…
ENDPROC

Function Routine

Users can call robot functions or other modules according to their own
needs within the function;
The function can be defined by users. Different custom functions can
be saved in the same program file, or be saved in different program
files;

The interrelationship between projects, tasks, program modules, and functions is shown in the

0 8Programming

62 xCoreControl System User Manual

following:

8.3RL editor
8.3.1Overview

Note

In each module, the code area located in front of the file and before the first function is called the
declaration area, which is used to store variable declarations for the GLOBAL and LOCAL scopes.
Variables defined in this area will be reinitialized each time the pptomain is executed.
For example: int0 is defined in the variable list with an initial value of 0; while int1 is defined in
the declaration area with an initial value of 0.
When the loop runs, int0 is incremented by 1 after each run, and its print value is "1, 2, 3..."; while
int1 will be reinitialized to 0 each time it runs, and its print value is "1, 1, 1...".

0 8Programming

xCoreControl System User Manual 63

① Selection, switching, and editing of project, task, and program files.

②
Program debugging quick positioning button, supporting
(1) Quick positioning to the main function; (2) Quick positioning to the cursor; (3) Quick positioning to a
certain function of the current program module.

③ Save the current task.

④
Program edit toolbar: Undo, Repeat, Cut, Paste, Copy, Reverse paste, Move up one row, Move down one
row, Batch comment, Delete current row, Find, View location, Quick edit, Batch modify, Offset, and
Auxiliary programming.

⑤
Updating the position information of a point, moving to a certain point, program syntax check, loop
mode, and output terminal.

⑥ Program editing area, where RL commands are edited through auxiliary programming and other methods.

8.3.2Tool introduction

①

Project synchronization identification.
Red identification means that the loading program in the controller is not synchronized
with the current program on the HMI.
Gray identification means that the loading program in the controller has been synchronized
with the current program on the HMI.

② Current project: Click to switch to the project configuration page.

③ Current task: Click to switch between tasks.

④ Current program module: Click to switch between program modules.

⑤

Clicking and dragging the dropdown clamp of the pointer allows you to select the target
for the pointer to move to. You can move the program pointer to the Main function
(equivalent to program reset), move the program pointer to the line where the cursor is
located, or move the program pointer to a specific function.

⑥

Display the save status. Clicking this button will immediately save the program locally and
push it to the controller.
Green: The program has been edited but is not synchronized to the controller.
Gray: The program has been synchronized to the controller.

⑦

Undo the previous operation.
Redo the previous operation undone.
Cut the selected line of code. Multiple lines can be cut at the same time.
Copy the selected line of code. Multiple lines can be copied at the same time.
Insert the copied or cut content into the line of the cursor.
Paste copied lines in reverse order: For example, if lines 1, 2, and 3 are copied, pasting

0 8Programming

64 xCoreControl System User Manual

will display them as lines 3, 2, 1.
rePaste copied lines in reverse order: For example, if lines 1, 2, and 3 are copied, pasting
will display them as lines 3, 2, 1.
Move the selected code line up one line. Multiple lines can be moved up at the same time.
Move the selected code line down one line. Multiple lines can be moved down at the same
time.
Comment or uncomment the selected code.
Delete the selected line or the line where the cursor is located.
Find keywords.
Show position: See the "Show position function" section below for details.
Split screen: See "Split screen function" below for details
Quick edit - One-click format: Format all programs in the current project (e.g., add
indentation, align operators).
Quick edit - One-click expand: Expand all loaded programs in the current RL editor.
Quick edit - One-Click collapse: Collapse all loaded programs in the current RL editor.

⑧
Check the current program for specific obvious errors, such as duplicate function names
and missing key identifiers. It cannot check out all syntax errors.

⑨ Loop mode switching: The program executes in a loop. The program only runs
once.

⑩ Display Print information and syntax information.

⑪
Update the pose of the point on the line where the cursor is located to the current pose.
Note: Simply position the cursor on the line containing the point.

⑫ "Move to" function, see the "Move to function" section below for details.

⑬
Batch modify: Perform batch modifications to speed, turning zone, tool, and work object
parameters.

⑭ Point offset tool. See "Point offset tool" below for details.

⑮ Auxiliary programming tools.

8.3.3Auxiliary programming

The auxiliary programming interface can assist programmers in quickly building program
frameworks, inserting program commands, and changing command attribute configurations. The
auxiliary programming interface includes two parts: Insert Command and Attribute Settings.

8.3.3.1 Insert command
Insert Command is responsible for inserting desired commands into program text.

0 8Programming

xCoreControl System User Manual 65

S/N Explanation
① Program command group selection area;
② Program common element selection area;
③ Program command/element selection area, for selecting a subdivided command;

④
Command/selection insertion confirmation area, used to insert the default parameters
or elements of the selected command into the project text;

8.3.3.1.1 Example I: Insert MoveL command

Step Graphical Representation Explanation

1. Click the "Auxiliary
Programming" -> "Insert
Instruction" button to open
the Insert Instruction
interface;

To open the Insert
Instruction interface.

2. Select "MoveL" from
"Motion Commands";

After selecting "Motion
Commands", other
commands will be hidden.
Then, select the "MoveL"
command.

3. Select the previous line
of the desired insert line
using the cursor;

To select the desired insert
line.

4. Click the "Insert Next
Row" button;

To insert the command
into the line below the
selected line in "3".

0 8Programming

66 xCoreControl System User Manual

8.3.3.1.2Example II: Insert a function

Step Graphical Representation Explanation

1. Click the "Auxiliary
Programming" -> "Insert
Instruction" button to open
the Insert Instruction
interface.

To open the Insert
Instruction interface.

2. Select the "Function".

3. In the input box below
"Name," fill in the desired
function name.

4. Click the "Insert"
button.

After clicking the "Insert"
button, the text for the
corresponding function is
created at the end of the
text.

8.3.3.1.3Example III: Insert an element

Step Graphical Representation Explanation

1. Click the "Auxiliary
Programming" -> "Insert
Instruction" button to open
the Insert Instruction
interface;

To open the Insert
Instruction interface

0 8Programming

xCoreControl System User Manual 67

2. Select the "Element";

3. Select the variable and
other information you
want to insert in the
"Element" interface;

4. Move the cursor to the
desired text position;

5. Click the "Insert"
button;

After clicking the "Insert"
button, text will be
generated at the
corresponding position of
the cursor

8.3.3.1.4Example IV: Insert math/logic/operator

Step Graphical Representation Explanation

1. Click the "Auxiliary
Programming" -> "Insert
Instruction" button to open
the Insert Instruction
interface;

To open the Insert
Instruction interface

2. Select the "Math";

3. Move the cursor to the
desired text position;

0 8Programming

68 xCoreControl System User Manual

4. Click the "sin()" button;

After clicking the
corresponding button, the
text sin () will be
generated at the
corresponding position of
the cursor;

8.3.3.2 Attribute settings
Attribute Settings is responsible for updating the command parameter information for the selected
line.

S/N Explanation
① Attribute definition area, which describes the parameter name of the current command
② Attribute selection area, for modifying the parameters of the selected command

③
Attribute confirmation area. Click the "Replace" button to replace the command
parameters in the current line in the program text

8.3.3.2.1 Example I: Configure the SetDO command attributes

Step Graphical Representation Explanation

1. Select the desired
line containing the
command that needs
to be modified in the
text;

After opening the Attribute
Settings interface, the
details of the command will
be expanded in the interface

0 8Programming

xCoreControl System User Manual 69

2. Select the desired
parameters in the
"Attribute Settings"
interface;

3. Click the
"Replace" button

After clicking the "Replace"
button, the parameters of
the command in the selected
line are updated to the set
parameters

8.3.3.2.2 Example II: Configure the MoveAbsJ command attributes

S/N Graphical Representation Explanation

1. Motion parameter
settings;

Set the speed, turn zone,
tool, and work object
parameters of the
MoveAbsJ command.

2. Point setting;

1. Select the point;
2. Update the pose
information of the selected
point to the robot's current
pose;
3. Point information can be
manually modified;
4. Manually Jog the robot to
the selected point;
5. Click the "OK" button to
update the data modified in
3 to the point data;

0 8Programming

70 xCoreControl System User Manual

8.3.3.2.3 Example III: Configure the MoveL command attributes

S/N Graphical Representation Explanation

1. Motion parameter
settings;

Set the speed, turn zone, tool,
and work object parameters of
the MoveL command;

2. Point setting;

1. Select the point;
2. Update the pose
information of the selected
point to the robot's current
pose;
3. Point information can be
manually modified;
4. Manually Jog the robot to
the selected point;
5. Click the "OK" button to
update the data modified in 3
to the point data;

3. Offset setting

4. Offset point
debugging interface.

This interface is non-editable
and is intended for use after
applying an offset through
Jog settings.

0 8Programming

xCoreControl System User Manual 71

8.3.4Point offset tool
8.3.4.1Overview

This tool allows for global offset modification of taught points within a user-selected range of motion
commands in an RL program. The current controller version supports three offset methods: Program
offset, Angle offset, and Mirror offset.

8.3.4.2Program offset parameters introduction
This tool allows for the global offset of taught points within a user-defined range of motion
commands in the RL program.
When the work object is required to be translated only, the parallel offset is used, and only the xyz
values are adjusted. When you want to adjust both the position and attitude of the work object, after
the "Orientation Variable" is turned on, the orientation values ABC will also be adjusted.

Principle: Calculate the relationship between the original frame and the offset frame through 6 points
including p1, p2, p3, q1, q2, and q3. When "Pose Variable" is not turned on, only p1 and q1 need to
be set.

①
Point Selection: Select the position of the point that needs to be offset, and specify task
and mod, start line, and end line. Then, this tool will search for the points involved in all

0 8Programming

72 xCoreControl System User Manual

commands from the start line to the end line.
Attention: Commands commented out with "//" are not searched.

②

New point generation method: You can choose between "Overwrite Original Point" or
"Generate New Point".
If "Generate New Point" is selected, you can choose the naming method for the new
point: "Automatic Renaming" or "Original Point Name+Specified Suffix".

③
Insertion position: Specify the position where the newly generated command will be
inserted. By selecting either task or mod, the generated command text will be created
starting from the designated insert line.

④ Click the "Next" button to go to the Offset setting page.

⑤
Offset matrix generation method: "Input" or "Select/Teach" can be selected, and the
"Pose Variable" is supported only in the latter.

⑥ Choose whether the pose is variable or not. If not, only translation is considered.

⑦

Under the "Select/Teach" condition, 2 points or 6 points used to calculate the pose need
to be specified. For each point, you can select the "Select", and then select the existing
points in the corresponding pull-down list. You can also select "Teach" and click the
"Record" button to record the current position of the robot.

⑧
Click the "Back" button to enter the Point Selection page. Click the "Next" button to
start calculating the offset points.

Use restrictions:
1. It is recommended to keep the number of offset points per time within 1000, otherwise, interface
freezing or loss of points may occur.
2. When the system calculates an offset point, it will automatically check whether the point is
reasonable, and if not, an error message will be displayed, and the generation of commands will fail.
But the points before the unreasonable points will still be generated.
Cause of point unreasonableness: ① Parameter error ② Singular position ③ Point unreachable
④ Other errors.
3. If there is no point between the start line and the end line of the specified mod, an error message,
"No point to be offset found", will be reported.
4. The robot needs to be connected when this tool is used, otherwise, an error message of "robot
communication error" will be reported.
5. The angle between the vectors formed by any two points of p1, p2, and p3 shall be greater than 1°,
otherwise, it will be judged that the three points are collinear and an error message of "reference point
error" will be reported; The same applies to q1, q2, and q3.
6. The point name in the command needs to be consistent with that in the point list (case-insensitive),
otherwise, an error message of "point xxx not found" will be reported.
7. When the tool page is open, and when you perform operations such as adding or removing tasks,
adding or removing points, editing RL, and switching between projects on the "Task List", "Point
List", and RL editing pages, this tool will not automatically refresh. It is necessary to close and
reopen the tool page manually for refreshing this tool.

8.3.4.3Angle offset parameters introduction
This function provides angular offset capability for Cartesian points. It allows for rotational offset of
taught points within a user-defined range of motion commands in the RL program by specified
angles.

0 8Programming

xCoreControl System User Manual 73

The point selection for Angle offset is identical to Program offset. After the effective range is selected,
perform the following operations to complete the angular offset.

①
Define the rotation plane: The user needs to specify three points (P1, P2, P3) to
determine the reference rotation plane for the Angle offset function. These three points
can be selected from the point list or confirmed through teaching.

②

Disable rotation axis:
Set [Use rotation axis] to "No". The system will calculate a circle based on the 3
specified reference points P1, P2, and P3 (all lying on the circumference), with the
rotation axis passing through the circle center perpendicular to the circular plane and the
rotation direction following the vector from P1 to P2.

③

Enable rotation axis:
Set [Use rotation axis] to "Yes". The system will calculate a rotation plane based on the
3 specified reference points P1, P2, and P3. Then, specify an additional reference point
P0, where the rotation axis is defined as the line passing through P0 and perpendicular to
the rotation plane, with the rotation direction following the vector from P1 to P2.

④
Set offset angle and repeat count: This function will rotate the points multiple times,
generating a new set of motion commands for each repetition.

Note:
1、This function does not support angular offsets for joint-space points
2、After performing angular offsets, the orientation of robot points in the new RL program may
differ from the original program. Always verify through manual slow-speed single-step execution and
individual point confirmation before initiating continuous operation

8.3.4.4Mirror offset parameters introduction
This function provides mirror offset functionality for Cartesian points. Users can select the points to
be offset and apply mirror offsets according to specified rules.

0 8Programming

74 xCoreControl System User Manual

The point selection for Mirror offset is identical to Program offset. After the effective range is
selected, perform the following operations to complete the mirror offset.

①
Select mirror points:
Choose reference points p1 and q1 as the mirror basis. These points can be selected from
the point list or taught manually.

②

Rotation disabled:
Set [Use rotation] to "No". The system will calculate the mirror plane based on the
positions of p1 and q1. The position of the point to be offset will be mirrored across this
plane, while its orientation remains unchanged before and after the offset.

③

Rotation enabled:
Set [Use rotation] to "Yes". Additional reference points p2, q2, p3, and q3 must be
specified. The triangle formed by (p1, p2, p3) must be symmetrical to the triangle
formed by (q1, q2, q3) across the intended mirror plane. In this mode, both the position
and orientation of the points to be offset will be mirrored across this plane, resulting in
symmetrical orientations before and after the offset.

8.3.4.5Operation examples
Step Graphical Representation Explanation

1. Click the "Point
Offset" button to
open the tool;

It can only be used in manual mode
with the permission level of
"Programmer" and above;

2. Select the point
to be offset, set the
parameters, and
click the "Next"

button;

Here, select the points of lines 2 to 5 in
the "main" of the "task0" task;
The point generation method is
"generate a new point", with the name
suffix of the new point needing to be
specified;
The insertion position selects the 7th
line of the "mod" file;

0 8Programming

xCoreControl System User Manual 75

3. Prompt
"number of points
to be offset";

The points to be offset here are point1
in line 2, point2 in line 3, point2 in line
4, and robtarget2 in line 5.
Note:
1. The "point2" is calculated twice, but
it actually will be offset only once, so
only one offset point will be generated.

4. Set the offset
calculation
method and

reference point,
and click the
"Next" button;

As the progress bar pops up during the
execution of the offset, please wait
patiently;

5. Prompt "offset
successful". The
contents of the 7th
to 10th are newly

generated
commands;

You can see the generated point
information in the point list;

8.3.5Move to function
"Move to" Function: This function enables the robot to move to the selected point by executing a
series of operations;

8.3.5.1Operation examples
Step Graphical Representation Explanation

1. In the RL
editor

interface,
select the

corresponding
motion

command;

It can only be used
in manual mode
with the permission
level of
"Programmer" and
above;

2. Click the
"Move to"
button in the
top-right
corner;

0 8Programming

76 xCoreControl System User Manual

3. In the
"Move to"
pop-up

window, select
the

corresponding
tool, work
object, and
point;

Single-point motion
command: No need
to select a point;
Multi-point motion
command: Confirm
the selected points;
Choose the tool and
work object for the
move to;

4. In the
"Move to"
pop-up

window, select
the target point
and execute
the "Move to"
function.

Select "MoveJ,"
"MoveL," or
"MoveAbsJ"
(displayed only for
joint angle points)
in the bottom-right
corner, and long
press to trigger the
"Move to" function.

8.3.6Show position function
8.3.6.1Overview

"Show position" function: This function is primarily designed for users to identify the current stop
position of the robot and determine which line of the RL program it corresponds to.

Triggering the show position function can be done in the following ways:
1. Clicking the "PPToMain" button;
2. Clicking the "Show position" button;
3. Clicking the "Refresh Pos" button;

When the "Show position" function is triggered, a symbol will be displayed on one or more
lines in the RL program interface, indicating that the robot's current position matches the point
position used on those lines.

8.3.6.2Show position parameter settings
Refer to the "Settings" -> "HMI Settings" -> "Looking Position Params" to configure the tolerance
range between the robot's actual position and the point positions in the RL program;

0 8Programming

xCoreControl System User Manual 77

8.3.7Split screen function
8.3.7.1Overview

The function is primarily designed to facilitate quick access to I/O information, register information, and other function
interfaces while users edit RL programs;
8.3.7.2Steps

Step Graphical Representation Explanation

1. Click the "Split
screen" button in
the top toolbar;

It can only be used in manual mode
with the permission level of
"Programmer" and above;

2. Display the left
split-screen
interface;

During split-screen mode, the right
operation panel and left menu panel
automatically close;
When exiting split-screen, the two
panels automatically expand;

3. Switch
split-screen
information
display

Click the tab bar on the split-screen
panel to switch between I/O
information, Register information, and
RL information views;
The I/O list and Register list support
name search functionality;

8.3.8Tool/work object pointer following function
When the robot is in Manual mode, the tool/work object group in the upper-right corner of the teach
pendant will automatically switch to match the tool/work object assigned to the currently selected RL
program line. Note: This function is not supported for custom tools/work objects defined in the RL
program.

① When Line 2 is selected, the tool/work object in the upper-right corner automatically updates to
tool0, wobj0
② When Line 3 is selected, the tool/work object in the upper-right corner automatically updates to
g_tool_0, g_wobj_0

8.4Project configuration
The Project Configuration interface is used for the relevant configuration of the current project.

0 8Programming

78 xCoreControl System User Manual

8.4.1Robot selection
When the RobotAssist software is running on the PC side and the robot is not connected, if you want
to edit the RL project offline, you can select a previously connected robot here, and the system will
switch and display the project data of the robot.
When the RobotAssist software is connected to a robot, the currently connected robot is shown here.

8.4.2Project
Reload: Reload the selected project.
Compared to previous versions, Version 3.1 has implemented adjustments to the RL programming
language syntax. The main changes are as follows:
1. All functions and register commands must be enclosed in parentheses () when called;
2. Every expression must be terminated with a semicolon ;

For example, in older versions, the program code may be written like this:
MoveL p1,v3000,z50,tool0
int a = 200
ConfL off
Whereas in Version 3.1, it shall be modified to the following format:
MoveL(p1,v3000,z50,tool0);
int a = 200;
ConfL(off);

Upon upgrading to Version 3.1, when you click "Reload" in the "Project Configuration" interface or
click the "PPToMain" button in the "Program Editing" interface, the system will automatically detect
and display a prompt to guide you through the project upgrade process.

Please note that once the upgrade is complete, if you need to revert to a previous version, you can
export the current project in the 3.1 format. The exported ZIP file will include
"ProjectName_old1.zip," which is a backup of your project before the upgrade. Be sure to keep this
backup file properly stored for future needs.

Set as default: Set the selected project as the default project, which can be automatically loaded when
the robot is started up.
Save as: Save as a selected project and push it to the controller.
Import: Open the Import Project page and select parameters such as the project system and project
path to be imported.
Export: Open the Export Project page where you can select the project you wish to export and specify
the export path. The system supports exporting projects in the following formats: xCorev2.2,
xCore3.0, and xCore3.1 formats.
New: You can click it to create a new project. The project name can only be a collection of letters,
numbers, and an underscore.
Rename: Rename the currently selected project.

0 8Programming

xCoreControl System User Manual 79

Delete: Delete the currently selected project.

Warning

Files cannot be recovered once deleted!

8.4.3Synchronization
There are three ways to synchronize the project files in HMI with those in the controller:
1. After the connection between the two is established, their project files will be automatically

synchronized immediately, with the project files in the controller taking precedence;
2. When the important information of a project (such as tool and work object) changes, this

change will be synchronized to the controller immediately;
3. The RL code will be automatically pushed to the controller when performing operations such as

operation debugging. If the work is not completed and you need to save it, you can click the
"Push to Controller" button on this page.

"Load from Controller" button: The teach pendant will re-synchronize and load the projects from the
controller, and this operation will directly overwrite all current projects in the teach pendant.
"Push to Controller" button: The teach pendant will synchronize its current projects to the controller.

8.4.4Restore project
When the project is modified, the controller will back it up periodically. In the drop-down list, select

a backup project named by time and click "Restore" to restore the backup project. Click to
refresh the backup project list.

8.4.5Project upgrade
Normally, you do not need to manually use the "Project upgrade" function in the "Project
Configuration" interface. However, in certain special scenarios where the upgrade cannot be
performed by clicking "Reload" or the "PPToMain" button, you may manually trigger the upgrade
process by clicking this function button.

Please note that once the upgrade is complete, if you need to revert to a previous version, you can
export the current project in the 3.1 format. The exported ZIP file will include
"ProjectName_old1.zip," which is a backup of your project before the upgrade. Be sure to keep this
backup file properly stored for future needs.

8.4.6Predefined parameters
The predefined parameters include the basic frame parameters, as well as a train of standard speed
and turn zone parameters, and these variables are used as parameters for the RL command. You can
view the physical meanings of the variables on this page, but they are not allowed to be edited
currently.
In the Programming tab -> Project Configuration -> Predefined parameters page, you can view the
predefined parameters provided by the controller.

0 8Programming

80 xCoreControl System User Manual

In the Settings tab -> Motion Parameters -> Motion Parameters page, you will find the configuration
options for the predefined parameter vmax, including the maximum TCP velocities and maximum
external axis velocities. vmax is the only predefined parameter that can be configured by the user.

8.5Custom production
The custom production interface provides a simple and intuitive interactive mode for users. Users can
create a concise monitoring and interaction interface simply by selecting registers, DI/DO signals,
points, and project variables of interest.
The functions supported by this interface include: displaying and editing registers, displaying the
status of DI signals, enabling DO signals, updating point positions, and displaying and editing project
variables.

8.5.1Overview

①

The Operation/Display Panel mainly includes the selection, display, and operation of
different controls.
The currently selectable controls include single DI, single DO, point position update,
registers, and project variables.

②
Interface editing column. It involves data export from and import to the custom
production interface, page switching, and individual control editing and deletion.

0 8Programming

xCoreControl System User Manual 81

The Operation/Display Panel contains multiple production task controls, which can be imported,
exported, edited, and deleted through the buttons below.
The control contains three parts, among which the top part shows the control signal name, the middle
part refers to the control's label text (customized by users), and the bottom part is available for users'
operations/displays on the control. Various controls provide different interactions.

8.5.2Basic operations
Operation Graphical Representation Explanation

Control
selection

Clicking the circle in the top left corner of
a control allows you to select it on the
interface, and the circular frame in the top
left corner of the selected control will turn
red. For instance, the currently selected
control on the interface is the "suctionCup"
control in the first row and second column.

Import
Click the button to enter the import
interface, and select the file import path,
the import entries, and whether to replace.

Export
Click the button to enter the export
interface and select the controls that need
to be exported and the export path.

Edit
Click the button to enter the control
editing page. Detailed usage instructions
are provided below.

0 8Programming

82 xCoreControl System User Manual

Delete Click the button to delete the selected
control.

8.5.3Control introduction
With four types of controls offered by the custom production interface, users can develop the
interface style suited for the production conditions. They are the single DI control, single DO control,
register control, and PERS variable control, respectively. The control editing page is shown below.

8.5.3.1Single DI control
Single DI control can be used for DI display. Types of optional IO boards include: (1) IO devices
configured by users on the IO Device interface; and (2) User DI signals configured by users in the
project's IO signal list.
The editing interface is shown below:

① Select the control type, including: single DI, single DO, register, PERS variable, and none.
② General attributes, including: label text, label color, and background color. See ⑥ for the

representative label colors.
③ Special attributes, which are different for each control. See below for details.
④ Pattern bar, providing the data expression pattern shown by various controls.

The pattern is not available for some controls, such as register controls.
⑤ Preview bar, where you can preview the final style effect of the current edited control.
⑥ 16 colors are available, and you can enter the desired color number in ②.

0 8Programming

xCoreControl System User Manual 83

When the selected DI is True, the "On" icon under the control pattern is green. When the IO is False,
the "Off" icon under the control pattern is gray.
The single DI control is not available for control interaction and is only used for DI status display.

8.5.3.2Single DO control
Single DO control can be used for DO signal display and settings. Types of optional IO boards
include: (1) IO devices configured by users on the IO Device interface; and (2) User DO signals
configured by users in the project's IO signal list.
The editing interface is shown below:

When the selected IO is True, the "On" icon under the control pattern is green. When the IO is False,
the "Off" icon under the control pattern is red.
The single DO control provides button on/off interaction, and the "Allow Operation" attribute can be
used to set whether a control can be operated on the "Operation/Display Panel".
Click the button within the red frame in the "Operation/Display Panel" interface to operate the DO
signal.

0 8Programming

84 xCoreControl System User Manual

8.5.3.3Register control
Register controls can monitor and modify the register values configured under "Communication" -
"Registers". Registers can be filtered by "Bus device".
Attention: The register control does not support the register array type.
The editing interface is shown below:

The register control does not provide a status-style display, but it can display the register value.
The register control is edited by entering values using a numeric keyboard. On the
"Operation/Display Panel" interface, you can click on the value "Display/Edit Box" for the value to
enter the register value (attention: writing is only allowed when the register is set to "Write-only"
mode).

Value writing steps:
Step Graphical Representation Explanation

1. Selection
Click on the value
display/editing box in the
register control.

0 8Programming

xCoreControl System User Manual 85

2. Input Input the register value to be
set.

3. Successful
value writing.

8.5.3.4Point position update control
The point position update control can modify point information in the point list, with selectable point
types including Cartesian and joint.
The editing interface is shown below:

The point position update control does not provide status style display but offers an "Update Position"
button.
Clicking the "Update Position" button on the "Operation/Display Panel" interface allows you to
update the values of the selected point.

Steps for updating point position:

Step Graphical Representation Explanation

0 8Programming

86 xCoreControl System User Manual

1. Selection Select an empty control

2. Select the point
position update function

3. Select the point whose
position needs to be

updated

Support both Cartesian and joint
point types

4. Complete
Click "Complete" to update the
point position in the custom
production interface

8.5.3.5Project variable control
The project variable control can monitor and modify the variables configured under "Project" -
"Variable List". The selectable variable types include int, byte, bool, and double. Variable array types

0 8Programming

xCoreControl System User Manual 87

are not supported.
The editing interface is shown below:

The project variable control does not provide a status-style display, but it can display the project
variable values.
The project variable control is edited by entering values using a numeric keyboard. The "Allow
Operation" attribute can be used to set whether the control can be operated on the "Operation/Display
Panel".
Click the value display/editing box on the "Operation/Display Panel" interface to write values to
project variables.
Value writing steps:

Step Graphical Representation Explanation

1. Selection Click the value display/editing
box in the project variable control

2. Input Input the project variable value to
be set

0 8Programming

88 xCoreControl System User Manual

3. Successful value
writing.

8.6Task list
The xCore control system supports multitasking.
Through multitasking, the "parallelism" of multiple robot programs can be realized. Typical
application scenarios are shown below:
 Monitor continuously one certain signal even if the Main program stops operating (it is similar

to the background PLC function, but its response speed is much lower);
 While the robot executes the main program of motion, it performs data reception, transmission,

and other data processing with external devices, without being restricted by the execution logic
of the main program;

 Receive some inputs through the teach pendant while working;

The "Task List" in the xCore system provides a management interface for parallel processing tasks.
Users can view the attributes of existing tasks, create new tasks, edit tasks, and delete tasks on this
interface.

8.6.1Task attributes
When creating or editing a task, it is necessary to set the task attributes.

Task
attributes

Description

Task name

The task name must be unique among all tasks, it should only be composed of
alphanumeric characters and underscores.
Its initial character shall not be a number and the maximum length of the task
name is 20 characters.

0 8Programming

xCoreControl System User Manual 89

Description Describe the role of the task to assist users in understanding.

Task type

It includes routine tasks, motion tasks, semi-static tasks, visual tasks (used along
with xVision).
Among them, a motion task refers to the control of the robot's motion using RL
commands. Only one motion task can run in a single project.

Autostart
It is used along with the Production mode. When selected, the program starts to
re-execute when the system is restarted. It will not be stopped by the teach
pendant or emergency stop under normal conditions.

Priority Set the task priorities.

Create file When the main function generation is checked, the main function will be
generated automatically after task creation. The same applies to other functions.

8.6.2Regular tasks and motion tasks
8.6.2.1New task

You need to create a new project before creating the first task. If you already have a project and want
to add a new task, you don't need to repeat creating a new project.

New project

New task
After creating a new task, you can edit the attributes of the task.

Task attribute editing
Note:
 10 tasks are supported.
 Amaximum of one motion task can run at a time.

0 8Programming

90 xCoreControl System User Manual

 Changes in the task type, task entry function, and whether it is a motion task attribute take
effect immediately.

8.6.2.2New program module
Each task can include several program modules (mod files). As shown below, you can click the Edit
button,

and click "+" on the new page to create a new program module. After entering the basic information
such as the name and description of the module, you can click "OK" to complete the creation of the
program module.

At this point, you can view the newly created program module in the task list.

In the upper part of the RL editor, you can also select a new program module and program it.

8.6.2.3Starting and running

Click in the upper part of the RL editor to select a task. Use the Start/Stop button or external
signals to control the start/stop of the selected task in the condition of manual enabling or automatic
power-on.

0 8Programming

xCoreControl System User Manual 91

Use restrictions:
 Generally, a background task will run cyclically. If a task does not contain any wait commands,

the background task may consume too much computing resources, causing the controller to be
unable to handle other tasks;

 The scopes of variable VARS and the constant CONST are limited to their respective tasks, but
the GLOBAL-level PERS variable is a global variable;

 When PPToMain is executing, all non-running tasks execute PPToMain;
 When there are tasks running, it is forbidden to modify the contents in the Task List interface;

8.6.2.4Inter-task communication
The inter-task communication supports two methods: PERS variable and interruption.

Inter-task communication by PERS variable
 Global-level PERS variables with the same name shall be defined in all task projects that

require communication, and the data type and dimension of variables shall be identical;
 PERS variables shall be used to control task execution and data transmission where necessary;
 All variables and tasks in the variable list and point list are available at will;

Use restrictions:
 You just need to specify an initial value for the PERS variable in one of the tasks. If you have

specified an initial value for the same PERS variable in multiple tasks, the initial value defined
in the first running task will be used.

 When a task waits for another task by means of the PERS variable and the WaitUntil or
WHILE command, it is necessary to pay attention to coordinating with the wait command
(greater than 0.1s) to avoid the program quickly executing the empty judgment command, and
thus occupying too much system resources.

8.6.3Semi-static task
Since v2.0.1, the xCore control system supports performing semi-static tasks.
The semi-static task belongs to the multi-task function and runs a program written in RL language.
Compared with regular and motion tasks, semi-static tasks have two features as follows: (1) After
being properly configured, they can self-start after being switched on without any commands such as
power-on and start-up commands; (2) The pause button is not effective on the semi-static task. With
these two features, the operation cycle of a semi-static task covers almost the entire time from
power-on to power-off of the control system.

Typical application of semi-static takes:
 Judge the robot position periodically, and notify the host computer via registers, IOs, etc.;
 Output custom heartbeat signal;
 Transmit data among multiple devices;

8.6.3.1Semi-static task creation
In the task list, click "+" to create a new task. Select Semi-static Task in the Type, complete other
attribute settings, and click the "Next" button to create the semi-static task.

0 8Programming

92 xCoreControl System User Manual

8.6.3.2Starting and stopping of semi-static tasks
Just like the regular task startup, after creating and configuring a semi-static program, the semi-static
task can be started by powering on in manual or automatic mode and clicking the “Start” button. If

there is a semi-static task running in the project, there will be a prompt in the
middle of the bottom status bar. At this time, clicking pause or power off will not stop the semi-static
task. Clicking the "semi-static status" button will pop up a confirmation dialog

box , and clicking "OK" will stop the semi-static task. When the
semi-static task does not trigger a program exception, only this button can stop the semi-static task
(the semi-static task can be paused only after the regular task is paused).

8.6.3.3Configuring semi-static task for self-start
In the project configuration interface, set the project associated with the semi-static task as the default
project.

0 8Programming

xCoreControl System User Manual 93

In the task list, check the two options, running on startup or not and running or not.

Finally, click pptomain to synchronize the project configuration from the HMI to the controller,
allowing the semi-static task to self-start.

8.6.3.4Safety level of semi-static tasks
In addition to configurations such as priority and "running or not" of regular tasks, the semi-static
task has an additional feature: safety level.
It is used to define the controller's exception handling policy for the semi-static task as the semi-static
task operates abnormally (e.g. data reception failed).
 Safety irrelevant: It applies to the host computer or operators who do not care about the

operating condition of semi-static tasks. A semi-static task configured with this safety level will
be stopped individually if its operation is faulty, with the operation of other tasks not affected.

 System stop: Applicable when the data of semi-static tasks affect the program's safety logic (e.g.
deciding the motion point via a semi-static task, and informing the host computer how to
control the robot via a semi-static task). The semi-static tasks of the System stop level will
make all tasks paused if there is any fault in their operation.

8.6.3.5Recommendations for semi-static task debugging
 The controller supports single-step debugging of semi-static tasks in manual power-on mode.

However, it is still recommended to complete debugging with regular tasks first, and then
change the task type to semi-static task to avoid unexpected startups of unfinished semi-static
tasks during reboots in the debugging process;

 For semi-static tasks, it is recommended to add error handling for commands that may fail. For
example, the ReadXX command may time out or fail due to network fluctuations, external
device issues, or other unexpected factors. To ensure that semi-static tasks continue execution
with minimal interruption, it is advisable to use a try_catch statement to protect the code that
may fail, and perform appropriate error handling in the catch statement (e.g., use goto to jump
back to before the Read command and retry the data reading);

 Due to the specialty of long-term execution inherent to semi-static tasks, the single-run

and loop-run settings in the upper-right corner of the debugging interface do not apply to
semi-static tasks. All semi-static tasks run in a continuous loop by default.

8.6.4Task monitoring
The current running status of each task can be monitored in the status monitoring.

8.7List of variables
8.7.1Variable naming rules

Variable names in the RL language can consist of letters, underscores, and numbers, but must start
with a letter or underscore "_". However, variable names cannot be the same as system keywords.
You can see Keywords pre-definition for RL system keywords.
In addition, there are precautions as follows:
In the same module, GLOBAL and LOCAL level variables with duplicated names are not allowed;
In different modules, GLOBAL variables with duplicated names are not allowed;
In different modules, LOCAL variables with duplicated names are allowed;
In the same module, no variables (GLOBAL, LOCAL, excluding ROUTINE) are allowed to have
naming conflicts with functions in this module;
In different modules, no naming conflicts of GLOBAL level functions and variables are allowed;

Note

When a variable name contains two characters only, it is important to note that the second
character shall not be "h" or "b", otherwise, the variable may be converted to hexadecimal or
binary. For more information, please refer to the Number system conversion.

8.7.2Variable scope
The RL language system defines three scopes:

0 8Programming

94 xCoreControl System User Manual

GLOBAL

It is visible to any program module of the current task, and can be declared
in the module declaration area;
If variables need to be accessed across tasks, they shall be declared using
the GLOBAL PERS keyword.
Attention: The variables in the variable list and point list are all global, and
are readable and writable by all tasks.

LOCAL It is only visible to the current program module, and can be declared in the
module declaration area;

ROUTINE

It is only visible within the current function and can only be declared
within the function body, and the scope type (GLOBAL or LOCAL) is not
allowed to be specified when the scope variable is declared;
Attention: Scope only applies to variables, not custom functions.

8.7.3Storage type
Each variable can be divided into three kinds: VAR (Variable), PERS (Persistent Variable), and
CONST (Const Variable), depending on whether it can be modified during program execution.

VAR（Variable） Variable, can be re-assigned in the process of program execution;

CONST（Const Variable）
Constant variable, cannot be re-assigned during program
operation, and this type
must be determined at the beginning;

PERS（Persisten Variable）

Continuous variable. During program execution, if the value of the
variable type changes,
the variable will be automatically modified from the initial value to
the current value, thus achieving the effect of "Persistent" storage;
Note:
 Even if the value of a PERS type variable is changed while

the program is running, the initial value displayed in the
program editor declaration area is not immediately refreshed,
and the initial value displayed in the program editor
declaration area is updated to the latest value only when the
program reloads or stops;

 Regardless of whether the program is running or not, only
the initial value of the PERS variable can be viewed in the
"Variable Management" interface, and its current value can
be viewed through status monitoring or the print command.

8.7.4Keywords pre-definition
The following are reserved keywords (case insensitive) that are predefined for the RL language:
Module、EndModule、Proc、EndProc、Func、EndFunc、SetDO、DO_ALL、
SetGO、SetAO、WaitDI、Wait、WaitUntil、WaitWObj、WBID、Q、P、J、V、W、T、S、L、
CA、DURA、IGNORELEFT、EJ、1J、FCBV、FCCV、FCOL、FCXYZ、FCCART、PE、PER、
TCP、ORI、EXJ、CFG、PDIS、JDIS、MoveAbsJ、MoveJ、MoveL、MoveC、MoveT、LOCAL、
TASK、GLOBAL、VAR、CONST、PERS、INV、DOT、CROSS、sin、cos、tan、asin、cot、
acos、atan、atan2、sinh、cosh、tanh、ln、log10、pow、exp、sqrt、ceil、floor、abs、rand、GetCurPos、
Print、PrintToFile、ClkRead、TestAndSet、IF 、Else、Endif、WHILE、ENDWHILE、for、from、

to、endfor、Break、Continue、Del、Int、Double、Bool、String、BYTE、Robtarget、Speed、
Zone、Tool、Wobj、Jointtarget、TriggData、Load、FCBoxVol、FCSphereVol、FCCylinderVol、
FCXyzNum、FCCartNum、Pose、CLOCK、INTNUM、SYNCIDENT、TASKS、Call、Return、
EXIT、Pause、StopMove、StartMove、StorePath、RestoPath、True、False、Interrupt、When、
Offs、CalcJointT、CalcRobT、CRobT、RelTool、SocketCreate、SocketClose、SocketSendByte、
SocketSendInt 、 SocketSendString 、 SocketReadString 、 SocketReadBit 、 SocketReadInt 、
SocketReadDouble、AccSet、MotionSup、TriggIO、TriggJ、TriggL、TriggC、On、Off、clock、
intnum、userframe、pinf、ninf、FCFRAME_WORLD、FCFRAME_TOOL、FCFRAME_WOBJ、
FCFRAME_PATH、FCPLANE_XY、FCPLANE_XZ、FCPLANE_YZ、FC_LINE_X、FC_LINE_Y、
FC_LINE_Z、FC_ROT_X、FC_ROT_Y、FC_ROT_Z、Offs、CalcJoinT、CalcRobT、CRobT、
RelTool、Start、Time、ClkReset、ClkStart、ClkStop、CONNECT、WITH、IDisable、IEnable、
ISignalDI、Single、SingleSafe、WaitWobj、DropWobj、WobjIdentifier、WobjAngle、ActUnit、
DeactUnit、INTNO、Exp、DoubleToStr、WaitSyncTask、FCAct、FCDeact、FCLoadID、FCCalib、
FCSupvForce、 FCSupvTorque、 FCSupvPosBox、 FCSupvPosSphere、 FCSupvPosCylinder、
FCSupvOrient 、 FCSupvOrient 、 FCSupvReoriSpeed 、 FCSupvTCPSpeed 、 FCCondForce 、

FCCondTorque、FCCondOrient、FCCondReoriSpeed、FCCondPosBox、FCCondPosCylinder、
FCCondPosSphere、FCCondTCPSpeed、FCCondWaitWhile、FCRefLine、FCRefRot、FCRefSpiral、

0 8Programming

xCoreControl System User Manual 95

FCRefCircle、FCRefForce、FCRefTorque、FCRefStart、FCRefStop、FCSetSDPara

8.7.5Number system conversion
The RL language supports direct entry of hexadecimal, binary, or values of scientific notation by
adding a number system identifier after a number or letter.
Example 1
After the "h" suffix is added after 0−9, a−f, or A−F, the RL compiler treats the corresponding number
or letter as hexadecimal and converts it to decimal in the compiler. For example:
8h stands for 8 in hexadecimal and 8 in decimal;
bh stands for b in hexadecimal and 11 in decimal;
25h stands for 25 in hexadecimal and 37 in decimal;

Example 2
After the "b" suffix is added after 0−9, a−f, and A−F, the RL compiler treats the corresponding
number or letter as binary. For example:
1b stands for 1 in binary and 1 in decimal;
10b stands for 10 in binary and 2 in decimal;
1010b stands for 1010 in binary and 10 in decimal;

Example 3
Adding the "e±x" after a number indicates that the number is multiplied by 10 to the x power. For
example:
5e+20 represents 5×10^20;
26e−15 represents 26×10^(−15);
112e−10 represents 112×10^(−10);

8.7.6Variable declaration
A declaration must be made before using a variable. The format of the variable declaration command
is as follows:
SCOPE STORAGE TYPE varname [= value]
Where:
1. SCOPE refers to variable scope. Please refer to Variable Scope;
2. STORAGE refers to variable storage type. Please refer to Storage Types;
3. TYPE refers to variable type, and can be a basic type or a special type. Please refer to Variable
Type;
4. varname is the variable name. Please refer to Variable Naming Rules;
The content in square bracket [] is optional and can be either initialized or not when variables are
declared. For variables that are not explicitly initialized when they are declared, the system
automatically assigns different initial values as per the type of the variables. The default initial value
may cause program execution problems in some cases, so it is recommended to initialize each
manually added variable.

Example
There are a few examples of variable declarations as follows:
Example 1
VAR int counter = 8; //Declare the integer variable count and assign an initial value of 8
VAR double time = 2.5; //Declare floating-point variable time and assign an initial value of 2.5
VAR bool ifOpen = true; //Declare the variable bool type ifOpen and assign the initial value of true

Example 2
In general, no duplicate names are allowed for variables:
VAR int counter = 8;
VAR double counter = 2.5;
The compiler will report an error message at this time by prompting "Failed to add variable".

Example 3
However, a global variable and a local variable can have the same variable name:
VAR int counter = 1;
GLOBAL int counter = 555;
Although variables with different scopes allow duplicate names, it is not recommended to use
variables with duplicate names in order to avoid confusion and misuse, unless the variables with
duplicate names have special technological advantages.

Note

Variables cannot be declared inside loop statement blocks such as while, otherwise, duplicate

0 8Programming

96 xCoreControl System User Manual

declarations will be caused when this part of the code is repeatedly executed, resulting in a "Fail
to add variable" error. Please declare the variables outside the loop body.

Use restrictions
The ROUTINE variable that declares the PERS storage type is not supported;
When there is a duplicate name for variables or functions of different levels, the compiler will decide
which variable to be used based on the priority of the scope. Variables with the highest priority order
will be selected first, and those with lower priority order will be obscured and hidden. The priority of
scopes is as follows:
 When the variable names are duplicated, the priority of scopes is as follows: ROUTINE>

LOCAL> GLOBAL;
 When the function names are duplicated, the priority of scopes is as follows: LOCAL >

GLOBAL;

8.7.7User variable hold
The user variable "a" with hold is created in an RL project. This user variable is marked as a PERS
variable, then the value of this variable is held on the non-volatile storage media when RL stops, the
robot restarts, shuts down, or is powered off. When the robot is powered on again or RL is running
again, the value of variable a is restored to the value held. The initial value is assigned only when the
variable is created for the first time or re-edited. (Attention: Only PERS variables added to the
variable list possess the hold attribute. However, PERS variables defined in the variable declaration
area have no hold attribute.)

The persistence is supported for the following user variable types: Int, byte, double, bool, string, pose,
speed, zone, fcboxvol, Fcspherevol, fccylindervol, fcxyznum, fccartnum, torqueinfo, socketserver,
socketconn, and serials.

User variable hold configuration
On the RL project interface, the entries where persistent variables can be created as shown in the red
boxes below:

Click the variable list, point list, tool list, or work object list to create user variables of corresponding
type. All variables for which the persistent attribute can be created have a "persistent" attribute item,
where "yes" indicates that the variable is a persistent variable, marked as a PERS variable. For
example, create a PERS variable of int type, whose configuration is as follows: (Other types can be
configured by analogy)

0 8Programming

xCoreControl System User Manual 97

Modification of PERS variable
The PERS variables of the xCore control system are stored in the form of initial value+hold value.
The initial value refers to the data input by users to the variable list, and the hold value is the data,
after it is modified by the program, stored on the non-volatile storage medium. The hold values of
base types (int\bool\double) can be observed by status monitoring, and structure data (e.g., points,
tools, work objects) can be printed by the print command.
During the operation of RL program, the PERS variable can be modified by the operator "=", and the
modified data will be stored as a hold value within the controller. For the next time of program
operation, the hold value of corresponding variable is preferred to be read, and if there is no hold
value, the initial value of the variable is read.
If the PERS variable is modified by the point update button or the editing function of the variable list,
the initial value and hold value are modified at the same time.

8.7.8Variable list operation
The variable list interface allows the creating, viewing, modification, and deletion of almost all
variables in the robot system. The currently supported variable types include:
S/N Variable Type Description

1 System predefined
variables

Variables that cannot be modified by users and are used to store
certain system parameters, such as tool0/wobj0.

2 User predefined
variables

Variables that can be modified by users and used in multiple
programs, such as user-calibrated tools and work objects.

3 Program variables

Variables defined by the user in the program, which are generally
used only in the current program and its subprograms. Program
variables include most of the variable types supported by the
system.

8.7.8.1Variable viewing
For some types of variables that have specifically defined steps, such as: speed/zone (defined and
modified on the auxiliary programming interface). Although such variables can be viewed and
modified in the Variable View interface, it is still recommended to use the dedicated interface for
modification for the sake of convenient operation and fewer errors. The variable management
interface should be used primarily for viewing operations.

0 8Programming

98 xCoreControl System User Manual

Note

The variables that can be viewed and modified in the variable list interface are limited to
those used in the currently loaded robot program. Therefore, the displayed variables will
change when other programs are loaded.

8.7.8.2Variable editing
If you need to add variables or modify certain existing variables, you can click the "New" or
"Modify" button to enter the variable editing page for relevant operation.

Type Used to select variable types when creating new variables. All supported types
are listed in the sidebar on the left.

Name Enter the variable name.
Dimension To create or modify arrays, supporting up to 3D arrays.
Persistent Define as a persistent (pers) variable or non-persistent variable
Value Display the variable value

Description Provide a description of the variable

8.8Point list
8.8.1Overview

The point list is used to manage the robot points involved in projects in a unified manner. The points
used in the RL program need to be configured in the point list before they can be used in the program.

①
Point filter: Allow you to filter which points are displayed in the list below. You can filter
points by type, task, name, description, and function.

②
Point display: Show the attributes of each point, including name, attribute, persistence,
position, tool frame, work object frame, task, function, etc.

③

Point editing, use the "Update Position" button to update the point coordinates to the current
point position of the robot;
The button on the right is used to move the robot to this point position: Clicking the "Move
to" button will open the motion window. For Cartesian-type points, you can click the MoveL
or MoveJ button: The robot will move to this point position in a straight line or through joint
space motion; and for joint-type points, you can click the MoveAbsJ button: The robot will
move to this point position through joint motion.

④
Function button area: Import Point, Export Point, Create Point, Edit Point,

Delete Point, and Multi-select Points

Point editing page:
Cartesian space point:

0 8Programming

xCoreControl System User Manual 99

① Basic information, including point name, description, persistence, dimensions, task, and function.
② Pose information. The point type is not modifiable.

Clicking the "Update Position" button will update the point to the current pose, or you can change it manually.
Manual modifications to Cartesian data will not affect joint data, and vice versa.
Conf parameters: These parameters can be modified for the corresponding point position.

③ Clicking "Cancel" returns to the point list interface without saving any changes; clicking the "Complete" button saves
the current changes and returns to the point list.

Joint space point:

①
Basic information, including point name, description, persistence, dimensions, associated
frames, task, and function; clicking the dimension add or delete buttons can modify the
point's dimensions.

②

In the pose information, when the array is multi-dimensional, different dimensions can be
selected to modify their contents.
Clicking the "Update Position" button will update the point to the pose of the currently
selected dimension, or you can change it manually. For points of Cartesian type, manually
modifying the data does not change the joint data, and vice versa.

③
Clicking "Cancel" returns to the point list interface without saving any changes; clicking the
"Complete" button saves the current changes.

8.8.2Operation examples

0 8Programming

100 xCoreControl System User Manual

8.8.2.1Point creation/editing
Operation Graphical Representation Explanation

1. Creating/editing
Click the or

button to enter the
point editing page

2. Basic
information editing

Point type can only be
selected when creating a
new point;
When editing a point,
you can only select the
name, point description
(optional), persistence,
dimensions (optional),
task, function, etc.;
Users can set the point's
dimensions using the
dimension add and
delete buttons.

3. Pose information
editing

Select the type of point
and obtain the current
pose of the robot
through "Update
Position". If the point is
a new point, the current
pose will be obtained by
default.

4. Complete
Click the "Complete"
button to save the
current information.

0 8Programming

xCoreControl System User Manual 101

8.8.2.2Point "Move to"
Operation Graphical Representation Explanation

1. Select the
corresponding point
and click the "Move

to" button

2. Select the tool
and work object for

point motion

The "Move to" button can only be
clicked without clicking the
"Confirm" button if the selected
tool and work object match those
in the point information. If they
do not match, the "Move to"
button is grayed out and cannot be
used directly; motion requires
clicking the "Confirm" button
first.

3. Perform the
"Move to" operation

For joint-type points, only
MoveAbsJ motion is allowed. For
Cartesian-type points, only MoveJ
and MoveL motions are allowed.

0 8Programming

102 xCoreControl System User Manual

0 8Programming

xCoreControl System User Manual 103

8.8.2.3Point sorting

Operation Graphical Representation Explanation

1. Upon the first
entry to the point
list interface, the
sorting indicator is

displayed by
default on the
right side of the

name

A downward arrow indicates
descending order, and an
upward arrow indicates
ascending order

2. Click to sort

The point list will be sorted
according to the current
sorting symbol. Note: The
initial descending symbol
when first entering the
interface does not indicate
that the point list is sorted in
descending order until the
sorting function has been
used.

3. Reset the
sorting

Clicking "Reset" will restore
the point list to its state before
any sorting was applied.

0 8Programming

104 xCoreControl System User Manual

8.8.2.4Batch deletion of points
Operation Graphical Representation Explanation

1. Click the
Multi-select button

Click the multi-select button to
enter multi-selection mode.

2. Select points to
be deleted

Check the box before each point
to select, or use "Select All" to
choose all points.

3. Delete the
selected points

Click the Delete button and
confirm by clicking "OK" in the
confirmation dialog box to delete
the selected points.

8.9Path list
8.9.1Overview

The path list is used to record the trajectories of the drag teaching and perform operations such as
trajectory playback.

0 8Programming

xCoreControl System User Manual 105

① Path list, which displays relevant attributes, including: name, type, total length, sampling
interval, whether to include trajectory, DO signal, and description.

② Function button area: Import Path, Export Path, Create Path, Edit Path,
Multi-select Paths, and Delete Path.

Path editing page:

① Basic information, for setting path name and description.

②

Path recording. If you need to record DO signals, you click the "Select DO" button and
choose the DO signal in the pop-up dialog box. Each DO signal can also be mapped to a DI
signal. In this case, changes in the DI signal will be recorded during path recording, and
during subsequent playback, the output of the DO signal will be based on the recorded DI
signal. If no DI signal is associated, changes in the DO signal will be directly recorded. At
this time, the DO signal output can be manually set on the "Status Monitoring" - "IO Signal"
interface. Total duration: Total recording time

③
Playback, for play backing the recorded paths. You can set whether it runs in a loop, the
running rate, etc. You can click the "Playback" button to play back the recorded path and
confirm whether the recorded path is consistent with the expected one.

④
The trajectories can be saved in the cache region for subsequent use. Discard button: Discard
this recording

8.9.2Operation examples

Operation Graphical Representation Explanation

1. Turn on the drag mode. Click
the "+" button in the lower right
corner to create a new path.

This operation can also be
performed by pressing the
end-effector buttons of the
robot.

0 8Programming

106 xCoreControl System User Manual

2. Set the recording duration, and
after pressing the "Record"
button, drag the end-effector to
record the trajectory until the
timing ends or the "Stop" button
is clicked.

Attention: Please stop
dragging before the end of
the recording time,
otherwise, the path
recording will fail.

3. Turn off the drag enable button
and switch to auto mode. Click
the power-on button to power on
the robot. Set the replay speed
rate and replay mode, and click
the "Replay" button to view the
trajectory playback.

4. Confirm the trajectory after the
trajectory playback is finished.
Click the "Restore" button to save
the recorded trajectory as a file
successfully.

0 8Programming

xCoreControl System User Manual 107

8.10IO signal list
8.10.1Overview

In addition to the default Universal IO signals created by the "IO device" in the enabled state, if you
want to use the IO device alone to create a user IO signal, you need to create it on the "IO Signal
List" page.
The signalxx type variables are used to store and access IO signals in the RL program. For details,
refer to relevant sections about RL commands.

①

IO signal list, where you can view IO signal attributes, including:
 Signal name;
 Type: including DI/DO/GI/GO;
 IO board: It can be a standard IO module provided by ROKAE, and can also be a

Profinet bus or Ethernet/IP bus device;
 Start port and end port: the corresponding physical address that a IO signal mapped.

②
Function button area, where you can import, export, create, edit, multi-select, and delete IO
signals

Warning

1. If there is an error in the IO configuration, for example, when the mapped IO port exceeds the
physical limits or the IO is repeatedly assigned, the controller system will enter the SYS_ERR
state at the system starting and give an alarm message on the HMI. In this case, the user is only
allowed to enter the system configuration interface to correct the wrong configuration, with no
other operation allowed.
2. User IO signals cannot be mapped to system outputs.
The configured IO can be viewed on the status monitoring interface, on which the forced output or
simulation input of the IO is supported.

8.10.2Operation examples

0 8Programming

108 xCoreControl System User Manual

Operation Graphical Representation Explanation

1. Click the "+"
button in the lower
right corner to create
a new IO.

Users with the permission level of
"Programmer" or above can perform
creation and edit operations.

2. Attribute settings. Set IO signal name, description, IO
board, signal type, and port.

3. Using IO Signal in
the RL program.

For the input signal (DI/GI), the state
of the input node can be read directly
in the RL program using the variable
name of the input signal.
For example: Use the state of the
digital input as a criterion for judgment
IF (di1 == true)
do something…
ENDIF
For the output signal (DO/GO),
specialized commands SetDO and
SetGO can be used in the RL program.
See the Explanation of each command
below for details.

8.11User frame list
8.11.1Overview

The user frame is used as a reference frame when defining the work object frame, and it cannot be
used separately.

When establishing a user frame, you can choose "Calibration now", "Manual input" or "Do not
calibrate".
When "Calibration now" is selected, the 3-point method is used to calibrate. Before calibrating the

0 8Programming

xCoreControl System User Manual 109

user frame, the user needs to first calibrate a tool and then use the TCP of the tool to calibrate the user
frame. For this, it is recommended to use a tool with tips.
"Manual input" is allowed if the user frame is known in advance. Another option is "Do not calibrate",
in which case the user frame is considered as the world frame by default.

8.11.2Operation examples
Operation Graphical Representation Explanation

1. Click the "+" button in
the lower right corner to
create a new user frame.

Users with the permission level of
"Programmer" or above can perform creation
and edit operations.

2. Follow the steps shown
in the figure to perform
the calibration.

Jog the robot to guide the calibrated tool TCP to
sequentially point to the desired frame's origin,
a point on the x-axis, and a point on the
xy-plane or on the y-axis. Click the "Confirm
Point 1", "Confirm Point 2", and "Confirm Point
3" buttons accordingly.
After successfully confirming all three points,
click the "Calibration" button.

8.12Tool list
8.12.1Overview

A tool is a device that is installed on the flange of a robot to complete a specific processing procedure.
Common tools include pneumatic/electric grippers, welding guns, and sprinklers. No tool is attached
to the robot when it is delivered from the factory, and you need to purchase or design appropriate
tools according to the actual situation and complete the installation and settings in order to make the
robot work.
Any tool shall be calibrated to get the TCP data before it is used.
In the xCore controller system, the data type corresponding to tools is "tool". For detailed
explanations of the "tool", please refer to the section "RL Commands-Variables".

8.12.2Basic concept
Tool attributes include: center point and orientation, which represent the geometric parameters of the
tool; and weight, center of mass and rotational inertia, which represent the dynamic parameters of the
tool.

Note

tool0 is a tool variable pre-defined by the system. Its tool frame coincides with the flange frame
and both share the same dynamic parameter of 0. The tool0 variable is not allowed to be modified.

8.12.2.1Tool center point
Tool Center Point (TCP) is a specific point on the tool that is normally used by the robot to carry out
processing work, such as the wire tip of a welding gun and a tip of a pneumatic gripper. The robot can
rotate around the TCP and change its orientation while keeping the position of the TCP unchanged.

0 8Programming

110 xCoreControl System User Manual

Different tools may have different TCP, and determining an appropriate TCP according to actual
conditions can significantly increase programming efficiency.

Note

Unless otherwise specified, all references to "robot position, velocity, acceleration" in the Manual
refer to the position, velocity, and acceleration of TCP relative to the work object frame.

8.12.2.2Tool frame
The calibration of tool frame refers to the process of determining the pose of the tool frame relative to
the flange frame.
If the pose information of the tool relative to the flange is known, you can select "manual input" on
the teach pendant and input it directly without performing the calibration process.
If the pose information of the tool relative to the flange is unknown, xCore provides three methods
for tool frame calibration:
 Four-point method, used to calibrate the center point of the tool frame.
 Three-point method, used to calibrate the orientation of the tool frame.
 Six-point method, used to calibrate the center point and orientation of the tool frame at the

same time, which is equivalent to the integration of the four-point method and the three-point
method.

Additionally, xCore provides the "TCP correction function" to further improve the position accuracy
after tool frame calibration.

8.12.2.3Load parameters
The xCore system utilizes load-type variables to store the load parameters of tools. Attention: When
external tools are used, the load parameters in the tool variables store the load of the handheld work
object.
There are two ways to define a tool's load parameters:
If the user knows the tool load data, the user can select the manual input method on the tool frame
calibration interface and input the corresponding data directly;
If the tool load data are unknown, they can be obtained using the load identification function of the
xCore system.

8.12.2.4Load identification
The load identification function can conveniently calculate the dynamic parameters of the tool.

0 8Programming

xCoreControl System User Manual 111

Two methods are supported for load identification: one-step identification and two-step identification.
Industrial robots only support two-step identification, and the precision of two-step identification is
usually superior to that of one-step identification.

"Two-step identification" operation procedure:
1. Switch the robot to the automatic mode and power on;
2. Run the empty load identification program in the no-load state and wait for the program to
complete;
3. Mount the tool load, run the load identification program, and wait for the program to complete;
4. When the identification is completed, the identification result window pops up, and you click
"Save" to save.

Collaborative robots support "one-step identification", whose operation procedure is as follows:
1. Select the one-step identification method for load identification;
2. Install the load and ensure that it is properly mounted and that there is no interference during the
identification process;
3. Switch to automatic mode and power on;
4. Click the "Loaded button", run the identification program, and wait for the program to complete;
5. Confirm the identification results and save them.

Note

Please make sure to accurately define the dynamic parameters of the new tool. Otherwise, failure
to do so will affect the motion of the robot and even damage the robot due to excessive load on
some serious occasions.
Before identification, switch on and preheat the robot in advance for more than half an hour to
improve the identification precision.
Load inertia calculation is based on the flange frame.
Load identification is only supported when the robot is installed upright.

Note

The following circumstances during identification will cause the identification to stop and cause
any identification data received to be lost. In this case, the user has to re-start the identification:
 The user selects other tools or switches to other interfaces halfway through identification;
 The user triggers the emergency stop or safety stop for external parts when the identification

program is running;
 The user switches from automatic mode to manual mode when the identification program is

running.

Warning

The identification program needs to be executed in the automatic mode, so all prevention measures
shall be effective. As the external control signal may start the robot at any time, you need to switch
to automatic mode for identification program execution only after the installation is complete and
all personnel have retreated to a safe area.

0 8Programming

112 xCoreControl System User Manual

8.12.2.5TCP correction
xCore provides the TCP correction function to correct the Tool Center Point (TCP) of the tool frame.
For handheld tools that have undergone pose calibration, use the TCP correction function to improve
the accuracy of the TCP position. In cases where deformation of the tool's end effector or errors in the
tool installation position cause significant deviations between the theoretical TCP and the actual TCP,
the TCP correction function can be used to correct and quickly recalibrate the TCP of the tool frame.
The TCP correction function currently supports two types of correction: XY correction and Z
correction, which are used to correct the X, Y, and Z position parameters of the tool frame's TCP.

Note

1. The TCP correction function currently supports only handheld tools.
2. The TCP correction function is available for robots in upright, side-mounted, and inverted
installations.
3. Only tools that have undergone pose calibration can use the TCP correction function.
4. If the "Gravity Compensation" function is enabled, to ensure the accuracy of TCP correction,
please set the tool load accurately.
5. The TCP correction function is only available for use with 6-axis robots.

8.12.2.6Use of tool frame
Used during Jog:
If it is necessary to use a special tool for Jog operation, select the desired tool in the drop-down list of
the 'Tool' in the menu on the upper side of the teach pendant interface.

Used in the RL program:
It is very simple to use a special tool in the program, and you just need to use the desired tool in the
"Tool" parameter of the motion statement. When the "Aux Program" interface of the teach pendant is
used to write motion commands, the default "Tool" and "Wobj" are tool0 and wobj0.

0 8Programming

xCoreControl System User Manual 113

8.12.2.7External tools and handheld tools
In most cases, a tool is installed on the robot, and the tool moves with the robot to complete specified
work. Such a tool is called handheld tool. Typical handheld tools include: grippers, suction cups, and
welding guns.
In certain specific situations, installing a tool onto the robot may affect its normal usage, such as
during grinding or gluing. In these cases, it would be more appropriate to mount the work object on
the robot and fix the tool at a specific external location. We call these tools that are installed outside
the robot and fixed at a certain location external tools (some brands call them Stationary Tool or
Remote TCP), and the corresponding work objects are called handheld work objects.

8.12.3Operation examples
8.12.3.1New handheld tool

Before the calibration of tool frame, the user needs to prepare a fixed external point, which shall be
located within the robot’s working range and can be contacted by the calibrated tool in a very flexible
orientation.

Operation Graphical Representation Explanation

1. Click "+" in the bottom
right corner of the tool list
to enter the New Tool
wizard interface.

Users with the permission level of
"Programmer" or above can perform creation
and edit operations.

0 8Programming

114 xCoreControl System User Manual

2. Set the tool attribute:
Robot hold.

3. Pose calibration, taking
the three-point method as
an example: Select
"Calibrate now" and set
the calibration method to
"3 Points". Then, click the
"Perform calib" button to
enter the "New User
Frame" page to perform
the calibration.

Jog the robot to move the calibrated tool TCP to
the points of the desired frame in sequence: the
origin, a point on the x-axis, and a point on the
xy-plane or on the y-axis, and click the
"Confirm Point 1", "Confirm Point 2", and
"Confirm Point 3" buttons accordingly.
After confirming all three points, click the
"Confirm" button to return to the "New Tool"
page, where the "Calibration Status" will now
be displayed as "Calibrated."
When the four-point method is used to calibrate
the tool origin, the orientation differences
between the four points shall be as large as
possible. In other words, the robot shall try to
contact the external point in different
orientations.

4. Load identification
(taking manual input as an
example): Select "Manual
Input," click the "Perform
manual input" button, and
enter the "Tool Load
Identification" page.

Input the physical information of the tool, click
the "Next Step" button, and return to the "New
Tool" page. At this point, the "Identify status"
will be displayed as "Identified".

5. Click the "Next" button
to complete the creation
of the new external work
object.

The newly created external work object will be
displayed in the work object list.

8.12.3.2New external tool
The calibration methods for external tools are consistent with those for handheld tools, supporting
three methods: six-point method, four-point method, and three-point method.
Attention: To calibrate the external tool frame, it is necessary to use the already calibrated handheld
tool.

Operation Graphical Representation Explanation

0 8Programming

xCoreControl System User Manual 115

1. If a calibrated handheld
tool already exists in the
list, it can be used to
assist in the calibration of
an external tool. In this
example, we will use
"tool1" as the reference.

The external tool to be calibrated shall
have a tip.

2. Click "+" in the bottom
right corner of the tool list
to enter the New Tool
wizard interface.

Users with the permission level of
"Programmer" or above can perform
creation and edit operations.

3. Set the tool attribute:
External.

4. Switch between tools in
the upper right corner and
select the already
calibrated handheld tool,
"tool1".

5. Pose calibration, taking
the four-point method as
an example: Select
"Calibrate now" and set
the calibration method to
"4 Points". Then, click the
"Perform calib" button to
enter the "Tool
Calibration" page to
perform the calibration.

Jog the robot so that the TCP of the
calibrated tool can point at the origin of
the desired work object frame in
different orientations, and then confirm
the first, second, third, and fourth
points respectively. The orientation
difference between the 4 points shall be
as large as possible, which means the
robot shall try to contact the external
point in different orientations.
After the calibration is completed, the
system will pop up the calibration
error. Select whether to re-calibrate
according to the error situation (refer to
the confirmed calibration accuracy).

Note:
The external tool must be used together with the corresponding work object, meaning among the
Position parameters which are selected at the same time in the tool and work object respectively, one
must be External while the other be Robot hold. Otherwise, the system will prompt an error and
forbid jogging the robot.
The reference frames for defining tool frames and work frames of external tools differ from those for
defining tool frames and work frames of normal tools. You can refer to the following table.

0 8Programming

116 xCoreControl System User Manual

Frame name Definition of a normal tool
relative to …

Definition of an external tool relative
to …

Work object frame User frame User frame

User frame World frame Flange frame

Tool frame Flange frame World frame

8.12.3.3Use of TCP correction
Before using the TCP correction function, prepare a fixed external tip point that must be within the
robot's working range and accessible by the tool to be calibrated in a relatively flexible orientation.

Operation Graphical Representation Explanation

1. In the tool list interface,
select the tool that needs
correction and click the
"Edit" button in the lower
right corner to enter the
Edit Tool wizard
interface.

Users with the permission level of
"Programmer" or above can perform
creation and edit operations.
The external tool to be calibrated shall
have a tip. The tool needs to be
calibrated and have its load set, and it
must be a handheld tool.

2. Using "XY correction"
as an example
Enter the pose calibration
interface. Select the "TCP
Correction" button,
choose the correction
type, and then click the
"Execute Correction"
button to enter the
specified type of TCP
correction interface.

TCP correction supports two types of
corrections: "XY Correction" and "Z
Correction".
"XY Correction": Correct the X and Y
parameters of the tool's TCP position.
"Z Correction": Correct the Z
parameter of the tool's TCP position.

3. Adjust the tool's pose
and confirm the TCP
correction starting point

Jog the robot so that the tool tip
contacts the external tip, ensuring that
the robot flange is parallel to the world
frame's XY plane and the flange's Z
axis points in the negative direction of
the world frame's Z axis. Then, click
the "Confirm Starting Point" button.

4. Set the preset rotation
angle and move to the
first point

Select a preset rotation angle, ensuring
that it is reachable. Then, long-press
the "Move to First Point" button until
the target point is reached. (If none of
the preset rotation angles are reachable,
reconfirm the starting point)

0 8Programming

xCoreControl System User Manual 117

5. Confirm the first point
of TCP correction

After the robot moves to the target
point, click the "Confirm First Point"
button.

6. Confirm the second
point of TCP correction

Jog the robot in translation (only jog X,
Y, Z; no rotation) so that the tool tip
contacts the external tip point again,
and then click the "Confirm Second
Point" button.

7. Confirm correction and
set correction result

Click the "Confirm Correction" button
to complete the TCP correction.
The interface displays a pop-up
window showing the TCP correction
result. Click the "Confirm" button to
set the tool's TCP to the corrected
result, or click "Cancel" to keep the
tool's TCP as it was before correction.

8.13Work object list
8.13.1Overview

Work object refers to the object that is processed or handled by a robot with a tool.
The xCore system uses wobj (Work Object) type variables to describe an actual work object.
Defining a work object means creating a wobj variable.
The motion trajectories of robots are defined within the work object frame for two good reasons:
(1) When the work object moves or multiple identical work objects are being processed, the user only
needs to recalibrate the work object frame, and all the paths in the program can be updated
accordingly without the need to rewrite all paths in the program;
(2) It allows the processing of the work objects that are moved by an external axis (such as track and
positioner);
Each work object is jointly defined by two frames: one is user frame, which can be understood as the
workbench/table where the work object is placed and is particularly useful when multiple identical
work objects are handled; and the other is work object frame, which can be interpreted as the work
object itself on the workbench. The path points of the robot are described based on the tool position
relative to the work object position.

0 8Programming

118 xCoreControl System User Manual

For using the external tool function, the corresponding work object shall be installed on the robot. In
this case, the work object is called handheld work object. The handheld work object also needs the
calibration of the work object frame and must use the calibrated external tool for calibration. For
more details, please refer to the external tool function.

Note

Wobj0 is a work object variable pre-defined by the system, and both its user frame and work
object frame coincide with the world frame.
Same as tool0, wobj0 cannot be modified as well.
For PCB 3- or 4-axis robots, the work object frame only supports manual input. The components
of orientation A and C are set to 0, and manual user modification is prohibited.

8.13.2Use of work object frame
Used during Jog:
If it is necessary to perform Jog operation in a special work object frame, select the desired work
object in the drop-down list in the menu on the upper side of the teach pendant interface.

Used in the RL program:
It is very simple to use a special work object in the program, and you just need to use the desired
work object in the "Wobj" parameter of the motion statement. When programming the motion
commands on the "Aux Program" interface of the teach pendant, the "Tool" and "Wobj" in default are
consistent with those used during Jog operation, which are the currently selected "Tool" and "Wobj"
in the menu on the upper side of the interface are currently selected. For the detailed operation steps,
please refer to Insert Command.

Note

Generally, the work object parameter for the motion command is optional. Therefore, unless
otherwise specified, the system will use wobj0 by default, which coincides with the world frame.
To use the external tool function, all work object parameters corresponding to the tools must be
designated.

8.13.3Operation examples
8.13.3.1New external work object

To calibrate the external work object frame, it is necessary to use the already calibrated handheld tool
for assistance.

Operation Graphical Representation Explanation

0 8Programming

xCoreControl System User Manual 119

1. Click "+" in the bottom
right corner of the work
object list to enter the
New Work Object wizard
interface.

Users with the permission level of
"Programmer" or above can
perform creation and edit
operations

2. Set the work object
attribute to external.

3. Switch the tool in the
upper right corner to the
already calibrated
handheld tool, "tool1"

4. Click the "Perform
Calibration" button to
enter the work object
calibration interface.

Jog the robot to point the calibrated
tool TCP to the desired origin of
the work object frame, and click
the "Confirm Point 1" button.
Then, Jog the robot to point the
TCP to a point on the desired
X-axis of the work object frame,
and click the "Confirm Point 2"
button. After that, Jog the robot to
point the TCP to a point on the
desired Y-axis of the work object
frame, and click the "Confirm Point
3" button. Finally, click "Confirm
Calibration" to bring up a dialog
box for confirming the calibration
results, and click "Confirm." Then,
Click the "Next" button to return to
the "New Work Object" page.

5. Click the "Next" button
to complete the creation
of the new work object.

The newly created work object will
be displayed in the work object list.

0 8Programming

120 xCoreControl System User Manual

8.13.3.2New handheld work object
To calibrate the handheld work object frame, it is necessary to use the already calibrated external tool
for assistance.

Operation Graphical Representation Explanation

1. Click "+" in the bottom
right corner of the work
object list to enter the
NewWork Object wizard
interface.

Users with the permission level of
"Programmer" or above can
perform creation and edit
operations.

2. Set the work object
attribute: handheld

"External" refers to the case
where the work object is not fixed
relative to the end-effector of the
robot, while "handheld" means the
case where the work object is fixed
relative to the end-effector of the
robot.

3. Switch the tool in the
upper right corner to the
already calibrated external
tool, tool2

4. Load identification is
equivalent to tool load
identification

5. Click the "Execute
Calibration" button to
enter the work object
calibration interface.

Jog the robot to point the calibrated
tool TCP to the desired origin of
the work object frame, and click
the "Confirm Point 1" button.
Then, Jog the robot to point the
TCP to a point on the desired
X-axis of the work object frame,
and click the "Confirm Point 2"
button. After that, Jog the robot to
point the TCP to a point on the
desired Y-axis/XOY-plane of the
work object frame, and click the
"Confirm Point 3" button. Finally,
click "Confirm Calibration" to
bring up a dialog box for

0 8Programming

xCoreControl System User Manual 121

confirming the calibration results,
and click "Confirm." Then, Click
the "Next" button to return to the
"New Work Object" page

6. Click the "Next" button
to complete the creation
of the new work object

The newly created work object will
be displayed in the work object list.

8.14Variable monitoring selection interface
8.14.1Overview

The variable monitoring selection interface is used to add variables that need to be monitored.

① Monitored variable filter: Filter to display only the monitored variables needed to be
displayed in the list below.

② Variable monitoring display: Show attributes of each variable, including name, type, original
dimension, and description.

③
Function button area: import monitored variables, export monitored

variables, batch add, single add, delete monitored
variables.

8.14.2Operation examples
8.14.2.1Batch add monitored variables

0 8Programming

122 xCoreControl System User Manual

Operation Graphical Representation Explanation

1. Click the "Batch
Add" button

2. Select the variables
you need to monitor,
check the boxes within
the red frame, and then
click the "Complete"
button.

Note: When the
monitored variable
is an array, batch
addition will
monitor all
elements within the
array.

3. Open the Variable
Monitoring in Status
Monitoring to view the
monitoring status.

0 8Programming

xCoreControl System User Manual 123

8.14.2.2Single add monitored variable

Operation Graphical Representation Explanation

1. Click the "Single Add"
button

2. Select the variables
you need to monitor,
click "Complete," and if
the selected variable is
an array, you can choose
dimensions to monitor
specific elements within
the array.

Note that dimension
selection is only
available when the
variable is an array.

3. Open the Variable
Monitoring in Status
Monitoring to view the
monitoring status.

8.15About RL program

0 8Programming

124 xCoreControl System User Manual

8.15.1RL program format and syntax
8.15.1.1Overview

The name suffix of RL language program file is .mod, and the mod is the abbreviation of module. For
example: For MoveObj.mod or PickSomething.mod, each program file forms a program module.
RL language commands are not case-sensitive. For example, MoveAbsJ, moveabsj, and MOVEABSJ
all can be recognized. However, in order to maintain a uniform language style, it is recommended to
capitalize the initial letters.

8.15.1.2Program structure
Here is a simple RL program:

The entire program is divided into two major sections, the declaration area, and the implementation
area. The area before the first function in each Mod file is the declaration area. For example, in
main.mod, the part before GLOBAL PROC main is the declaration area. In the declaration area,
variables or constants can be defined. The variables defined in this area will be reset to their initial
values each time the program is executed.
VAR or CONST keyword represents storage type, with VAR indicating a variable and CONST
declaring a constant. If a variable's storage type is not explicitly declared, it defaults to being a VAR.

There are several differences between variables declared in the declaration area and those listed in the
variable list:
When a certain task finishes running and is reset, the variables defined in the declaration area within
the task will be reset;
The variables in the variable list, owned by the entire project, are the common variables. Non-PERS
variables in the variable list are only reset upon execution of pptomain, and PERS variables can only
be modified through the editing function in the variable list or by the RL program.

8.15.2RL program debugging
8.15.2.1Program pointer

The program pointer points to the line that has been parsed and run by the program.
On the HMI interface, the program pointer is indicated by a small green arrow (also called the green
pointer).

0 8Programming

xCoreControl System User Manual 125

8.15.2.2Motion pointer
The motion pointer points to the current command the robot is executing;
On the HMI interface, the motion pointer is indicated by a red arrow.

8.15.2.3Move program pointer
If you need to start the program after a line from the middle of the program, you can use this function
to move the program pointer to
the line where the cursor is, and then the program can be executed from a new position.

Operation Graphical Representation Explanation

1. Click the "Stop" button on the
right operation panel to pause the
RL program.

2. Click the line to which you
expect the pointer to move to make
it selected.

The background color is light blue
when selected.

3. Click the drop-down arrow next
to the Program Debug Quick
Positioning button, and select
"Cursor" from the list.

After selection, this button displays the
word "Cursor".

0 8Programming

126 xCoreControl System User Manual

4. Click the Program Debug Quick
Positioning button to move the
pointer to the selected line.

Use restrictions:
1. When using this function, the following commands will be ignored, and the compiler's compile
position will be directly moved to the target line.
In addition, all other commands will not be executed:
 All motion commands;
 SetDO, SetGO, Return, Wait, Print, and all Socket commands;
 Function call line;
2. The condition of the flow control command is ignored when moving the program pointer.
3. Do not move the program pointer across functions. It is necessary to first use the "program pointer
to function" to move the program pointer to
the beginning of a function, and then use the pointer function of a program.
4. The pointer of a program can only be moved to the motion command line.

8.15.2.4Single-step debugging
The single-step operation status is also known as Single-step Mode, as against the Continuous Mode.
The robot can switch between the two modes in most cases.
The single-step operation is mainly used for the program debug. The robot will try to execute one line
of commands as much as possible each time it runs in a single step, and pause the program after the
commands are completed, making it easy to confirm whether the teaching points of each line meet
the requirements. When a multi-task project is being debugged, single-step debugging will only
execute the tasks displayed on the HMI debugging interface, and the rest tasks will not be called.
If the single-step debugging executes read data commands (ReadDouble, ReadString, etc.),
time-related commands (Wait, WaitUntil, etc.), and logic commands (IF, GOTO, etc.), it will take two
to three clicks to complete the command due to the command characteristics.

Operation Graphical Representation Explanation

1. Move the pointer to a certain line.

2. Click the "Next" button on the
right operation panel.

0 8Programming

xCoreControl System User Manual 127

3. Click the "Next" button again, and
you can see that the robot is
executing the line. After completing
the execution, click the "Next" button
again to start the next step.

If a function is encountered, it
will jump to the inside of the
function, and the executing
line can be located through the
program pointer (green arrow).

Use restrictions:
1. In Continuous Mode where programs are executed automatically, and the turning zone should be
processed, motion lookahead is available.
2. In Single-step Mode where commands are executed directly without processing the turning zone,
motion lookahead is not available.
3. In Continuous Mode, motion only starts when there are enough lookahead points, and the system
only continues to parse the command when the robot is in place.
4. In Single-step mode, all next-step signals are triggered by the interface, without turning zone
processing and lookahead.
5. In Single-step Mode, no response is made when "Next" is clicked during motion.
6. In Continuous Mode, callbacks during motion are responded to according to the lookahead logic.
7. The next step can go to any line and execute the instruction literally. RL programs only process
"program commands", without distinguishing between motion commands and logic commands.
8. When the robot pauses on the turning zone in Continuous Mode, the next step will go back to the
target point corresponding to the current turning zone.

8.15.2.5Step back debugging
Step back debugging, also known as previous step debugging, allows you to revert directly to the last
correct position when a path error is detected during debugging, eliminating the need for multiple
JOG operations to exit the erroneous trajectory and thereby improving debugging efficiency.
Non-motion commands typically will be skipped and do not take effect during the step back process
Force control commands, motion setup commands, and logic commands will stop the step back
process.

8.15.2.6Step back use
xCore supports switching directly to Step Back or Step Back from the PPTO (Point-to-Point
Operation) cursor after pausing
When performing the first Step Back motion after positioning the PPTO cursor, since there is no
trajectory information available, the Cartesian point will be forcibly converted to a MoveJ motion.

Operation Graphical Representation Explanation

1. Pause during execution.
The lookahead has reached line
ten, but the robot is still on the
trajectory from J1 to P1

2. Click the Previous Step button on the
right-side operation panel.

The lookahead pointer will jump
to the motion pointer, indicating
that the system has entered step
back mode

0 8Programming

128 xCoreControl System User Manual

3. Upon clicking the Previous Step button
again, the robot begins the step back
motion.

The robot will revert along the
same path it was following at the
time of pause (in this case, a
MoveL motion) back to point J1
as indicated by the lookahead
pointer

8.15.2.7Step back use restrictions
The step back function is primarily used for debugging points, so most non-motion commands are
either ineffective or restricted during step back mode. Additionally, a few motion commands cannot
be stepped back due to their inherent nature and are also restricted. If an attempt is made to step back
through restricted commands, the controller will report an error.

For example:

Supported commands for step back debugging:
Type Specific Commands

Supported motion commands MoveAbsJ, MoveJ, MoveL, MoveC, and Home

Special motion commands SearchL, SearchC, TrigL, TrigJ, and TrigC (Note 1)

Unsupported motion commands MoveSP, MoveT, and MoveCF

Non-motion commands that

terminate step back

Conveyor commands, force control commands, logic commands, function calls,

advanced commands (Note 2)

Skipped non-motion commands All other non-motion commands
Note 1: Function such as search and Trig do not take effect during step back; they only produce
motion effects.
Note 2: Commands such as GetRobotState, BreakLookAhead, and GetRobotMaxLoad will be
skipped. All other commands in this category will terminate the step back process.

8.15.2.8Regain path
In some specific situations, the robot's position will deviate from its programmed path, for example:
During the period when the program is stopped (except for program stop caused by program reset),
the robot is moved to another position by Jog;
The emergency stop is triggered when the program runs, and the robot executes STOP 0;

When the program starts again from the stop position, if the system detects that the robot has deviated
from the programmed path,
the robot will then first perform a Regain Path motion to return to the original programmed path.

0 8Programming

xCoreControl System User Manual 129

To ensure safety, the movement speed of the robot is slower when returning to the programmed path,
and the movement of the robot can be stopped at any time
by pressing the "Stop" button on the Teach Pendant.

Use restrictions
1. The robot performs a joint trajectory when returning to the path, so the path of the end-effector is
unpredictable. Please monitor for potential collisions with the surrounding environment.
2. The control system will only perform path deviation detection when the robot resumes program
execution from the point where it was previously interrupted. If a deviation is detected, the system
will execute the Regain Path operation.
3. If the program is reset, the system will not check for path deviation and will start execution directly
from the first program line. Take precautions to prevent potential collisions.

8.15.2.9Loop mode
Click the "Loop mode" button to switch to loop mode or single mode.

Loop mode:
All tasks are reset after 0.5s when they reach the endproc of the specified function (default is the
Main function), and restart execution from the first line of the last specified function.
PPToMain operation takes the main function as the specified function;
PPToFunc takes the jump objective function as the specified function;
PPToLine does not affect the execution target of the function in the next loop.

Single mode:
All tasks (excluding semi-static tasks) are stopped permanently upon execution to the specified
function (default is the Main function), until the project is reloaded next start.

8.15.2.10Lookahead mechanism

8.15.2.10.1Basic concept

The lookahead mechanism cannot be turned off. The system automatically looks ahead when running
the program. You can use the Program
Pointer to view the lookahead position. From a lookahead perspective, RL commands can be divided
into four categories: motion commands, non-stop lookahead commands, turning zone execution
commands, and stop lookahead commands.

8.15.2.10.2Motion commands

The commands that control the robot to produce actual motion effect are shown in RL programming
commands for details, in which all "Motion commands", "Trigger commands", "Drag and replay
commands" and "Home" commands belong to the classification of motion commands.

8.15.2.10.3Non-stop lookahead commands

The command is executed immediately after the lookahead pointer is parsed, and then the lookahead

0 8Programming

130 xCoreControl System User Manual

pointer continues to run downwards to parse the next command, without affecting the turning zone
between the two motion commands.
Non-stop lookahead commands: Print command, logical judgment command, variable assignment
operation, user-defined function, collision detection dynamic threshold command, and motion
parameters dynamic modification command;
Example:
MoveL (p1);
IF (condition_1)
Print (“meet condition 1”);
MoveL (p2);

ENDIF
MoveL (p3);
By running the above program, if condition 1 is met, the robot will plan a continuous trajectory
motion of p1 > p2 > p3, and print the string "meet condition 1" when looking ahead to the print
command.
In the case where condition 1 is not met, the robot will plan a continuous trajectory motion with p1 >
p3.

8.15.2.10.4Turning zone execution commands

The turning zone command is executed when the preceding motion command either enters the
turning zone or completes its execution.
It is used to send a signal to the external device during the movement, indicating which motion
commands the robot has moved to.
Turning zone execution commands: WriteRegByName, SetDO, SetGO, SetAO, PulseDO, PulseReg,
InZone，SetVarValue, and SpeedRefrsh.
Example:
MoveL P19
MoveL P20
WriteRegByName (reg_position, 20);
MoveL P21
WriteRegByName (reg_position, 21);
MoveL P22
When the above motion commands are executed, the robot will plan a continuous motion trajectory
of P19 > P20 > P21 > P22. As the robot is about to complete the P20 motion and enters the turning
zone from P20 to P21, it will immediately write the number 20 into the register reg_position.
Similarly, when the robot is about to complete the P21 motion and enters the turning zone from P21
to P22, it will immediately write the number 21 into the register reg_position. External devices can
track the robot's motion progress by simply reading this register.

Note

The triggering time of the turning zone commands is affected by the performance of the robot

0 8Programming

xCoreControl System User Manual 131

itself, the size of the turning zone, whether the turning zone is generated, and the actual running
speed. It is suitable for the scene where the robot is ready to move. If it is required to trigger the
signal accurately at a certain position of the trajectory, it is necessary to use trigger series
commands.
If there is no turning zone or if a turning zone cannot be generated, the associated command will
be triggered after the corresponding motion command is completed.

8.15.2.10.5Stop lookahead commands

Except for the above three commands, all the other commands are stop lookahead commands, and the
controller will execute the commands after the robot completes all the movements before the
commands.
Example:
MoveL (P1);
MoveL (P2);
Wait (10);
MoveL (P3);
The Wait commands belong to the stop lookahead command. The robot will move to P2 and start
waiting for ten seconds after the deceleration stop is completed, and it will start to go to P3 after the
waiting is completed.

When a motion command uses a Fine turning zone, the lookahead pointer in the RL program will
stop at that line and wait for the movement to complete before continuing with lookahead
Example:
MoveAbsJ (j1,v1000,z50,tool0);
MoveL (p1,v1000,z50,tool0);
MoveL (p2,v1000,Fine,tool0);
// All subsequent commands will only run after the MoveL P2 has finished
MoveL (p3,v1000,z50,tool0);

8.15.2.11Interrupt function

The interrupt function can be triggered by a DI signal or a register, interrupting the current program
execution to run an interrupt function. Key features and considerations of the interrupt function are as
follows:
1. The interrupt function can interrupt motion commands, persistent commands
(network/communication read commands, connection acceptance commands,
SocketCreate, opendev, SocketClose, CloseDev, SendString, SendByte), and ordinary commands
(type conversion, string operations, and other instantly completed commands).
2. If an interrupt occurs during the execution of a motion command, the current motion will stop, and
the interrupt function will execute instead. After the commands inside the interrupt function are

0 8Programming

132 xCoreControl System User Manual

completed, the robot will return to the original path and resume execution. The regain path operation
after the interrupt function is not part of the interrupt. The regain path function performs motion in
joint space. It is recommended to use path recording commands in the interrupt function to ensure the
robot correctly returns to a safe position.
3. Except for waituntil, other persistent commands are not truly interrupted; instead, they are moved
to background execution. Error handling and task wake-up for these commands will be delayed until
the interrupt ends. If a wait command is executed during an interrupt and the wait time expires after
the interrupt ends, execution will proceed.
4. During an interrupt, register-read commands and external signal-control commands behave the
same as in continuous motion, while register-write and external signal-monitoring commands remain
responsive. Pause, emergency stop, and collision can halt interrupt execution. Single-step operation is
allowed during an interrupt.
5. Interrupt-related commands can only be used in motion tasks, and only motion tasks can execute
interrupts.
6. Interrupts cannot be used while entering force control mode. Once an interrupt is registered, force
control mode cannot be initiated with FcInit.
7. For an interrupt configured with single-trigger mode, if it receives an interrupt signal after being
disabled by IDisable, it will still be treated as completion of the single trigger
8. After an interrupt is registered with IRegister, it remains triggerable. However, when the task ends
or resets, the registered interrupt is canceled until IRegister is executed again.
9. If an interrupt is already being executed, newly triggered interrupts will not be acknowledged.
10. When a task is executing an interrupt, or when normal operation resumes (due to either manual
start command or interrupt exit triggering scheduler reset), the system will neither acknowledge new
interrupts nor halt the current task.
11. Within interrupt functions, no interrupt-related commands (except GetTrapData) or tray stacking
configuration commands can be called. Interrupts are prohibited when: laser welding is active,
conveyor startup commands are executing, or end-effector motion commands are in progress —
special attention must be paid when using these features.
12. If an interrupt occurs during drag playback, playback will not resume after the interrupt.

0 8Programming

xCoreControl System User Manual 133

8.15.3Debugging example

Operation Graphical Representation Explanation

1. After editing the RL
program, use pptomain to
move the pointer to the
main function, and check
the program for syntax
errors.

To facilitate single-step
debugging, pause command
can be inserted into the
program.

2. Switch the mode to
"manual mode", power on
the robot, and adjust the
program speed to a small
value to make the robot
run at a low speed.

3. Click the "Start" button
on the right operation
panel.

4. When the program runs
to pause, it will pause
until the "Next" button or
the "Start" button is
clicked.

The "Next" button will
single-step the program

5. Click the "Next" button
to start single-step
debugging.

Run the program to the SetDO
line, turn on status monitoring,
and check if the DO is in the
"off" state

6. Continue to carry out
single step to see if the
robot has reached the
desired point position.

7. Or move the cursor to a
certain line, and click the
"Next" button to check if
the command runs
successfully.

Run the program to the SetDO
line, turn on status monitoring,
and check if the DO is in the
"on" state

0 8Programming

134 xCoreControl System User Manual

8. After confirming that
there are no issues with
the program, execute
pptomain again and keep
the "program speed" low.
After running it
completely once, the
program speed can be
increased, and the
program can be switched
to "automatic mode" to
execute.

0 9Setting

xCoreControl System User Manual 135

9Setting
9.1Introduction to this chapter

This chapter provides a detailed introduction to various settings of the xCore control system.

9.2Controller settings
9.2.1Basic settings
9.2.1.1System information

① Version: control system version information;
② Robot type: robot model information;
③ MAC address: local MAC address;

④
Restart: Note that all configuration information should be saved before restarting;
Shut down: The controller software can only be restarted after the control cabinet is
powered off and then powered on again.

9.2.1.2System configuration

① Robot type: Select the robot model;
② Control cab type: Select the control cab type;
③ Safeboard: Select the type of safeboard;
Note: Please do not modify the system configuration. In special circumstances, adjustments should be
made under the guidance of the manufacturer.

9.2.1.3System time
The system time provides a time reference for functions such as log.

① Time value: controller time; //not refresh in real time
② Obtain controller time: After clicking, refresh to display the controller time, and the user

can confirm whether the value is reasonable;
③ Set to current time: Update the controller system time to the current system time of the

device where the RobotAssist software is located, without the need to click "OK" again.
④ The user can manually modify the time in ①, and set the controller time after clicking

"OK";

Warning

1. The system time is the absolute time standard for log information. Do not modify it arbitrarily.
Wrong system time will make it impossible for the user to trace the moment of a relevant event
through the log.
2. Do not frequently perform the two operations: obtain controller time or set to current time.
The interval between two operations (either one or both) should be greater than 5 seconds.

9.2.1.4System IP properties
Configure the connection mode, IP, and subnet mask of the robot's external network port on this page.

0 9Setting

136 xCoreControl System User Manual

① Name: Display the automatically obtained network card name;
② Mode: manual (IP can be changed) or automatic (IP is automatically assigned);
③ IP, gateway, subnet mask, and DNS server;

Note: The IP address of the debugging network port can only be modified to 192.168.0.160 or
169.254.160.160. When the IP of the debugging network port is 192.168.0.160, the IP of other
network ports cannot be modified to the 192.168.0 network segment; when the IP of the debugging
network port is 169.254.160.160, the IP of other network ports can be modified to the 192.168.0
network segment but not to 192.168.0.160.

9.2.2Advanced settings

Multi loop
encoding

Clear the multi loop value of encoder. Be careful!

Alias
Set an alias for each controller, so that the robots in the same LAN can
identify the controllers conveniently. The alias will be displayed on the
"Options" -> "Connections" -> "Robot Detection" interface.

Log save level
There are three levels of log: "info", "warning", and "error", ranking from
low to high. Set the level from which the log is kept. The log of lower
levels will only be displayed online, and will not be kept in the log.

Heartbeat cycle

"One high level + one low level" is a heartbeat cycle, and the duration of
high level is the same as that of low level. The heartbeat signal can be
bound to the DO signal through the system IO (see the system IO part for
details), or bound to the register through the "sta_heartbeat" (see the
register part for details).

Deviation path
sphere radius

Unit: mm.
Range: [0, 9999]
Definition: Given a value x, when the robot pauses at point A, a sphere is
formed with point A as the center and x as the radius. If the Euclidean
distance between the robot's current position and point A is less than x, the
deviation path sphere radius condition is satisfied. This parameter is used
in conjunction with the function code "sta_near_path". For details, refer to
the register section.

Deviation path Unit: degrees (°).

0 9Setting

xCoreControl System User Manual 137

orientation angle Range: [0°, 180°]
Definition: Given a value a°, when the robot pauses at point B, using B's
orientation as the reference, the current robot position's coordinate system
is compared with B's coordinate system. If the angular deviation between
these two coordinate systems is less than a°, then the path deviation sphere
angle condition is considered satisfied. This parameter is used in
conjunction with the function code "sta_near_path". For details, refer to the
register section.

Upper limit of
program speed in
manual mode

This parameter limits the upper limit that the program speed can be set
when adjusting the program speed through the program speed slider and
the "-/+" fine-tuning button in manual mode.
Example: After setting this value to 20%, if it is currently in automatic
mode and the program speed is 40%, the working mode will be switched
from automatic mode to manual mode, and the program speed will be
automatically set to 20%. When it is in automatic mode, the program speed
is not affected by this parameter.
Note:
1. When setting the program speed through the register function code (ctrl
_ set _ program _ speed) or SDK, if the robot is in manual mode, the actual
program speed will be limited by this parameter; if the robot is in automatic
mode, the actual program speed is the set value of the register function
code or SDK.
2. When the automatic mode is switched to the manual mode (the
switching method includes: the mode switching button on the HMI, the
register function code, the system IO, the external communication, and the
SDK), the program speed will be limited by this parameter.

Automatic mode
program initial
speed upper limit

Through this parameter, the program can run in automatic mode at a
relatively low speed (the value set by this parameter), enhancing the safety
of the operation. After running, the user can adjust the program speed
according to the actual situation.
Example: The parameter is set to 5%. If the current program speed is 60%,
when the program is run in automatic mode, the program speed will be
automatically adjusted to 5%; if the current program speed is 3%, the
program speed will remain at 3% when running the program in automatic
mode.

Default program
running speed
after startup

When this option is enabled, the controller will set the program running
speed to the configured default value upon reboot, ensuring a deterministic
program running speed after each controller restart. This setting cannot
exceed the manual mode speed limit or automatic mode speed limit. If the
configured value exceeds these above limits, it will automatically be
reduced to the corresponding limit value.

Jog speed limit Robot Jog speed cannot be adjusted to a value greater than this upper limit.
Emergency stop
trigger level type

setting

Through this setting, it is determined whether the register, system output,
and external communication output\state bits related to the emergency stop
state are "high" or "low" after the emergency stop is triggered.

9.2.3Authorization settings
9.2.3.1EtherCAT authorization

An authorization code is used to authorize the EtherCAT communication.

Note

The robot cannot be powered on if the authorization code expires or the authorization fails.

9.2.3.2Function authorization
The xCore system supports some optional software functions, which are divided into two types:
1. Languages: Japanese, Korean, Russian, and English;
2. Process packages: PV inserting process package, PV typesetting process package, laser welding
process package, and SDK secondary development interface;
To enable optional functions, you can purchase an authorization code file based on the list of function
to be enabled.

0 9Setting

138 xCoreControl System User Manual

Note: The authorization information is bound to the controller of the robot, one robot, one file.

Activation method: In "Settings"−"Controller settings"−"Authorization settings"−"Function
authorization", click "Select file", and select authorization file for authorization. If the authorization is
successful, restart RobotAssist according to the prompts to enable the optional functions.
Authorization validity: At present, the function authorization is permanently valid, and the controller
version upgrade, configuration deletion, factory reset, etc. do not affect the authorization state.
Authorized functions: The functions that the current robot has authorized are displayed.

Associated content: In "HMI Settings"−"Basic Settings"−"Language", only authorized languages are
displayed.

9.3HMI settings
9.3.1Basic settings

①

Language: Chinese, English, Japanese, Korean, and Russian are supported.
Note:
1. Chinese is the default language, and other languages need to be officially authorized by
ROKAE for use;
2. For xCore V1.7 onwards, the multilingual log is supported (only for "controller logs"). When
the HMI switches the language type, the controller will also switch with the language content
of the HMI. When the HMI and controller language settings are different, the controller will
switch to the language mode corresponding to the HMI when the connection is established. The
controller does not need to restart after switching the language. This mode is a hot switching,
but some detailed log information only takes effect after switching, and the logs generated
before switching the language may not be able to switch to the corresponding language.

②
Bind IP address: The robot detection function of "Options − Connections" can set whether to
perform detection through a fixed PC-side IP here.

③
Refresh interval: the refresh rate of the 3D display page of status monitoring, with the upper
limit is 100 Hz, and the default is 18 Hz.

④ Turn off the 3D display: Turn off the 3D display for status monitoring, and restart takes effect.

⑤
Timeout logout for permissions: After a certain period of inactivity, the logged-in administrator
will automatically log out. The default set timeout is 10 minutes; setting this value to 0 disables
this feature.

⑥
View position parameters: In the RL programming interface, this function allows viewing the
point position accuracy parameter. It supports fuzzy queries within an angular range, with a
default tolerance of 1°.

0 9Setting

xCoreControl System User Manual 139

① IP (only for xPad2): Set the static IP address for the Teach Pendant connected to the
robot.

② Lock screen (only for xPad2): Reduce the accidental touch of Teach Pendant by
unrelated personnel. After turning on this function, if the Teach Pendant is not operated
for a period of time (idle time), or after clicking the lock screen shortcut key, the Teach
Pendant will enter the lock screen state, similar to the picture below:

Unlock the screen by long pressing the circular button on the lock screen for 3 seconds,
or short pressing the lock screen shortcut key again.

③ Screenshot (only for xPad2): Take a screenshot of the Teach Pendant screen and save it
in the Teach Pendant directory. The picture format is JPG.

④ Cursor displayed or not: Whether the Teach Pendant cursor is set.

① Choose a theme: Choose a different display style;
② Theme size: Adjust the size of controls and fonts;
③ Workspace directory: Set the folder to save project files.

④
Timeout logout for permissions: When there is no activity on the interface for longer
than the set timeout period, the user permission will be switched to Operator

⑤ Point position accuracy: Set the point position accuracy

9.3.2Teach Pendant mode

0 9Setting

140 xCoreControl System User Manual

When the robot is turned on and used, it may be necessary to disconnect the physical connection
between the xPad2 Teach Pendant and the robot. If the physical connection is directly disconnected,
the robot will enter an emergency stop state. If you want not to affect the normal operation of the
robot, you can follow the following steps.

Step Graphical Representation Explanation

1. View the current mode
of the Teach Pendant on
this page, the default is
"Teach Pendant mode".
Click the "Switch mode"
button at this time, and try
to switch the mode to "No
Teach Pendant mode".
After the switching is
successful, the interface
displays the mode as "No
Teach Pendant mode".

 In the Teach Pendant
mode, the Teach
Pendant image is
colored, and the
connector is in a
connected state;

 In the No Teach
Pendant mode, the
Teach Pendant image is
gray, and the connector
is in a disconnected
state;

2. After switching to "No
Teach Pendant mode", the
physical connection of the
demonstrator xPad2 to the
robot can be disconnected.
(Refer to the section
"Robotic system
composition and
connections".)

At this time, the robot will
not enter an emergency stop
state.

To reconnect the Teach Pendant xPad2 to the robot, follow the steps below:
Step Graphical Representation Explanation

1. Establish a physical
connection between the
Teach Pendant xPad2 and
the robot. (Refer to the
section "Robotic system
composition and
connections".)

0 9Setting

xCoreControl System User Manual 141

2. View the current mode
of the Teach Pendant on
this page, and the state
should be "No Teach
Pendant mode". Click the
"Switch mode" button, and
try to switch the mode to
"Teach Pendant mode".
After the switching is
successful, the interface
displays the mode as
"Teach Pendant mode".

 In the Teach Pendant
mode, the Teach
Pendant image is
colored, and the
connector is in a
connected state;

 In the No Teach
Pendant mode, the
Teach Pendant image is
gray, and the connector
is in a disconnected
state;

Note

1. The plug & play Teach Pendant function is only available for some models. For models that do
not support this function, the system will prompt "Failed to switch Teach Pendant Mode". For
detailed model configurations, please consult our technical support.
2. The Teach Pendant mode is only recommended to be turned on when there is a need to remove
the Teach Pendant. It is not recommended to turn on it at will during normal debugging and use.

9.4User group
The xCore system is equipped with five levels of built-in users, which are Operator, Teacher,
Programmer, Admin, and System based on their operating permissions.
After connecting to the controller, it defaults to logging in with operator permission. When switching
to other permissions, a password needs to be entered.

User Default Password Permission Description
Operator None Run programs and report bugs
Teacher 123 Teach point positions

Programmer 1234 Edit program
Admin 12345 Change robot settings
System 123456 All permissions to control the robot

Note:
 A user of a higher permission level can modify the password of a same- or lower-level user.
 Operator-level user passwords cannot be modified.
 Switching from a high-level user to a low-level user does not require entering a password.
Please refer to the appendix for details of the permissions of each user group.

9.5Calibration
The xCore system provides robot calibration functions, including mechanical zero calibration, soft
calibration (industrial robot), force sensor zero calibration (collaborative robot), and base frame
calibration. The calibration function can perform one-key calibration or single-axis calibration.

9.5.1Zero calibration
The zero calibration here refers to the mechanical zero calibration, which aims to make the theoretical
zero of the robot coincide with the actual mechanical zero.
The zero scale is preset on the robot body, and the joints are aligned, that is, after returning to the

0 9Setting

142 xCoreControl System User Manual

mechanical zero, the calibration can be performed.

To prevent users from losing the zero due to accidental operation during zero calibration, after
clicking the "Calibrate" button for each axis or the "One-Click Calibration" button, a verification
code must be entered and "Confirm" clicked to make the calibration operation take effect.

Warning

Please do not calibrate the mechanical zero arbitrarily, and ensure that all robot joints are at the
zero point using the mechanical zero calibration block before calibration.
Do not perform the mechanical zero calibration on the robot after it is calibrated by a laser tracker.
Otherwise, the zero calibrated by the laser tracker will be lost, therefore affecting the robot
accuracy. In case the zero of the robot is lost, please contact ROKAE to restore the zero.

In some space-constrained scenarios, the robot may not be able to return to the mechanical zero, so
the "Angle Calibration" function can be used at this time. The prerequisite for using this function is to
know the joint angle of the robot at the calibration time, input it into the "Angle Calibration", and
then calibrate it, which can achieve the same effect as calibrating at the zero position.
Example:
Taking the xMate7 Pro robot as an example, assuming there is an obstacle above the 4-axis space, the
robot cannot reach the vertical state of the mechanical zero and needs to perform zero point
calibration. The robot can be adjusted to the right angle state shown in the following figure through
jogging. At this point, the 4-axis is 90 degrees. Then, in the "Angle Calibration", enter the current
corresponding angle information (the 4-axis: 90 degrees, and the rest: 0 degrees) to proceed.

0 9Setting

xCoreControl System User Manual 143

Please note that in the above example, although it is calibrated in a different orientation, the zero of

the robot remains in a vertical state. Therefore, if you directly use the Quick Turn to Zero
function after a successful angle calibration by inputting the current angle of the 4-axis at 90 degrees,
the robot will still move to the vertical state of the mechanical zero and thus collide with the obstacles!
So bear in mind that the Angle Calibration function calibrates the zero. It does not mean that the zero
is at the current angle.

9.5.2Soft calibration
The Soft Calibration function refers to the function of the robot to quickly recover the zero after the
zero is lost due to abnormal operations such as encoder battery undervoltage, disassembly of the
battery, or accidental touch and removal of multiple loops.
Before using this function, it is necessary to manually jog the robot to the zero (the wide and narrow
calibration slots are aligned, and the narrow slots are completely located in the wide slots), and this
function cannot restore the zero at any angle.
The Soft Calibration function is for industrial robots and collaborative robots.

As shown in the figure above, the soft calibration operation steps are as follows:
1. Manually jog the robot to zero (the wide and narrow calibration slots are aligned, and the

narrow slots are completely located in the wide slots);
2. Enter the "Main Menu − Settings − Zero Calibration− Soft Calibration" interface;
3. Click the "one-key calibration" button and confirm the pop-up prompt to retrieve the zero, and

the zero encoder value displays the encoder value of the zero of each axis;
4. Click the "Calibration" button corresponding to each axis, and confirm the pop-up prompt to

retrieve the single-axis zero.
Attention: If the zero point is calibrated through angle calibration, it is necessary to first jog to the
vicinity of the angle calibration value, and then perform soft calibration to retrieve the zero point.

9.5.3Force sensor calibration
The calibration is aimed at the xMate series of collaborative robots. During the long-term use of the
robot, the torque sensor may inevitably produce zero drift, which is manifested as the robot dragging
and drifting.

0 9Setting

144 xCoreControl System User Manual

After a similar problem occurs, the robot can be adjusted to the zero position to perform single-axis
calibration or one-key calibration.
If you want to calibrate the force sensor at any position, you can turn on the "Dynamic calibration"
switch, and then perform single-axis calibration or one-key calibration. The calibration accuracy of
this method may not be as good as that of performing force sensor calibration at the zero position of
the robot. In addition, after the dynamic calibration function is turned on, when the force control is
turned on in the drag and RL program, the system will automatically zero to ensure the normal use of
force control related functions.

Warning

Dynamic calibration involves two risks:
1. If the robot is in contact with the environment during dragging, i.e., the robot is in a non-free
state, the calibrated zero may have a big error, which may result in the wrong torque calculated and
failure to enable force control;
2. When the drag is turned on or the RL force control is enabled, you may encounter a dynamic
calibration error, indicating that the current sensor torque deviates greatly from the theoretical
model. You can check the following points: 1) whether the load is set correctly; 2) whether the
base frame is set correctly; 3) whether the mechanical zero has a large offset; and 4) whether there
is direct force contact with the external environment when the function is turned on.
For these reasons, dynamic calibration should not be turned on unless the torque sensor zero sees
serious drifting. This function switch defaults to the off state.

9.6Calibration of the base frame
The base frame is located at the center of the robot base, described relative to the world frame, and
defines the robot's relative pose to the world frame. In scenarios such as robot inversion, wall
installation, and multi-robot collaboration, it is usually necessary to first calibrate the base frame;
otherwise, abnormalities such as robot overload, shaking, and force control failure may occur.
There are two methods for calibrating the base frame: manual input and six-point calibration.

9.6.1Manual input

0 9Setting

xCoreControl System User Manual 145

Manually input the position and orientation of the base coordinate relative to the world frame, and the
orientation can be selected from Euler angles or Quaternions.
If you choose the two preset installation methods (front and back), the orientation value can be
automatically set; if you choose the "Custom" method, it can be manually entered.

9.6.2Six-point calibration

Step Graphical Representation Explanation
1. Calibrate a tool;

2. If it is not front
installation, turn off the
dynamics feedforward first
(Settings -> Dynamic
settings − Dynamic
feedforward);

3. Select "Calibration" for
the calibration mode of the
base frame;

4. Define the position of
auxiliary positions, which
is optional;

When the robot's tool cannot
reach the world coordinate
system due to excessive
distance, the base frame can
be calibrated using auxiliary
points.
The auxiliary position is
defined according to the
world frame.

5. Follow the HMI steps to
complete the settings for
the six points, and click
"OK".

6. Choose whether to save
the base frame data
according to the
calibration result.

9.7Frame calibration

0 9Setting

146 xCoreControl System User Manual

9.7.1Global tool list
9.7.1.1Overview

Global tool definition is consistent with tool definition. In the xCore control system, the data type
corresponding to global tools is "g_tool_num", with the num ranging from 0 to 15, totaling 16 global
tools. Global tools also belong to the tool type. For detailed descriptions of tools, please refer to the
"RL commands - Variables" section. Note that global tools differ from tools within individual projects;
global tools can be used across all projects.

9.7.1.2Basic concept
Refer to the basic concepts in 8.12.2 for details.

9.7.1.3Operation example - creating a global handheld tool
Before the calibration of tool frame, the user needs to prepare a fixed external point, which shall be
located within the robot’s working range and can be contacted by the calibrated tool in a very flexible
orientation.

Operation Graphical Representation Explanation

1. In the Coordinate
System Calibration -
Global Tool List
interface, select the
global tool you need
to edit.

When logged in with "Programmer"
or higher permissions, editing
operations can be performed on the
selected global tool. However, only
editing is allowed; new tools cannot
be added, nor can existing tools be
deleted.

2. Set the tool
attribute: Robot hold.

3. Load identification
(taking manual input
as an example):
Select "Manual
Input," click the
"Perform manual
input" button, and
enter the "Tool Load
Identification" page.

Input the physical information of
the tool, click the "Next Step"
button, and return to the "New
Tool" page. At this point, the
"Identify status" will be displayed
as "Identified".

0 9Setting

xCoreControl System User Manual 147

4. Pose calibration,
taking the three-point
method as an
example: Select
"Calibrate now" and
set the calibration
method to "3 Points".
Then, click the
"Perform calib"
button to enter the
"New User Frame"
page to perform the
calibration.

Jog the robot to move the calibrated
tool TCP to the points of the desired
frame in sequence: the origin, a
point on the x-axis, and a point on
the xy-plane or on the y-axis, and
click the "Confirm Point 1",
"Confirm Point 2", and "Confirm
Point 3" buttons accordingly.
After confirming all three points,
click the "Confirm" button to return
to the "New Tool" page, where the
"Calibration Status" will now be
displayed as "Calibrated."
When the four-point method is used
to calibrate the tool origin, the
orientation differences between the
four points shall be as large as
possible. In other words, the robot
shall try to contact the external
point in different orientations.

5. Envelope: Select
"Manual Input", click
"Execute Envelope
Editing", and enter
the "Envelope
Settings" interface to
choose the envelope.

6. Click the
"Complete" button to
finish editing the
global tool.

The newly created tool will be
displayed in the global tool list.

9.7.1.4Operation example - creating a global external tool
The calibration methods for global external tools are consistent with those for global handheld tools,
supporting three methods: six-point method, four-point method, and three-point method.
Attention: To calibrate the external tool frame, it is necessary to use the already calibrated handheld
tool.

Operation Graphical Representation Explanation

1. If a calibrated handheld
tool already exists in the
list, it can be used to
assist in the calibration of
an external tool. In this
example, we will use
"tool2" as the reference.

The external tool to be calibrated shall
have a tip.

0 9Setting

148 xCoreControl System User Manual

2. Click the "Edit" button
in the lower-right corner
of the Global Tool List
interface to enter the
Global Tool wizard
interface.

Users with the permission level of
"Programmer" or above can perform
edit operations.

3. Set the tool attribute:
External.

4. Switch between tools in
the upper right corner and
select the already
calibrated handheld tool,
"tool2".

5. Pose calibration, taking
the four-point method as
an example: Select
"Calibrate now" and set
the calibration method to
"4 Points". Then, click the
"Perform calib" button to
enter the "Tool
Calibration" page to
perform the calibration.

Jog the robot so that the TCP of the
calibrated tool can point at the origin of
the desired work object frame in
different orientations, and then confirm
the first, second, third, and fourth
points respectively. The orientation
difference between the 4 points shall be
as large as possible, which means the
robot shall try to contact the external
point in different orientations.
After the calibration is completed, the
system will pop up the calibration
error. Select whether to re-calibrate
according to the error situation (refer to
the confirmed calibration accuracy).

Note:
The external tool must be used together with the corresponding work object, meaning among the
Position parameters which are selected at the same time in the tool and work object respectively, one
must be External while the other be Robot hold. Otherwise, the system will prompt an error and
forbid jogging the robot.
The reference frames for defining tool frames and work frames of external tools differ from those for
defining tool frames and work frames of normal tools. You can refer to the following table.

Frame name Definition of a normal tool
relative to …

Definition of an external tool relative
to …

Work object frame User frame User frame

User frame World frame Flange frame

Tool frame Flange frame World frame

9.7.2Global work object list
9.7.2.1Overview

Global work object definition is consistent with work object definition; see 8.13.1 for details. In the
xCore control system, the data type corresponding to global work objects is "g_wobj_num", with the
num ranging from 0 to 15, totaling 16 global work objects. Global work objects also belong to the
work object type. For detailed descriptions of work object, please refer to the "RL commands -
Variables" section. Note that global work objects differ from work objects within individual projects;

0 9Setting

xCoreControl System User Manual 149

global work objects can be used across all projects.
9.7.2.2Operation example - creating a global external work object

To calibrate the global external work object frame, it is necessary to use an already calibrated
handheld tool for assistance.

Operation Graphical Representation Explanation

1. Click the "Edit" button
in the lower-right corner
of the Work Object List
interface to enter the
Global Work Object Edit
wizard interface.

Users with the permission level of
"Programmer" or above can
perform edit operations

2. Set the global work
object attribute: external.

3. Switch the tool in the
upper right corner to the
already calibrated global
handheld tool, "tool2"

4. Click the "Execute
Calibration" button to
enter the global work
object calibration
interface.

Jog the robot to point the calibrated
tool TCP to the desired origin of
the work object frame, and click
the "Confirm Point 1" button.
Then, Jog the robot to point the
TCP to a point on the desired
X-axis of the work object frame,
and click the "Confirm Point 2"
button. After that, Jog the robot to
point the TCP to a point on the
desired Y-axis of the work object
frame, and click the "Confirm Point
3" button. Finally, click "Confirm
Calibration" to bring up a dialog
box for confirming the calibration
results, and click "Confirm." Then,
Click the "Complete" button to
return to the "Global Work Object
List Editing" page.

5. Click the "Complete"
button to finish editing the
global work object.

The successfully edited global
work object will be displayed in the
Global Work Object List.

9.7.2.3Operation example - creating a global handheld work object

0 9Setting

150 xCoreControl System User Manual

To calibrate the global handheld work object frame, it is necessary to use an already calibrated global
external tool for assistance.

Operation Graphical Representation Explanation

1. Click "Edit" in the
bottom right corner
of the Work Object
List interface to enter
the New Work Object
wizard interface.

Users with the permission
level of "Programmer" or
above can perform edit
operations.

2. Set the work
object attribute:
handheld

"External" refers to the
case where the work object
is not fixed relative to the
end-effector of the robot,
while "handheld" means the
case where the work object
is fixed relative to the
end-effector of the robot.

3. Switch the tool in
the upper right corner
to the already
calibrated external
tool, "tool2"

Click "Execute Load
Identification" to
enter the Load
Identification
interface.

5. Click the "Execute
Calibration" button
to enter the work
object calibration
interface.

Jog the robot to point the
calibrated tool TCP to the
desired origin of the work
object frame, and click the
"Confirm Point 1" button.
Then, Jog the robot to point
the TCP to a point on the
desired X-axis of the work
object frame, and click the
"Confirm Point 2" button.
After that, Jog the robot to
point the TCP to a point on
the desired
Y-axis/XOY-plane of the
work object frame, and click
the "Confirm Point 3"
button. Finally, click
"Confirm Calibration" to
bring up a dialog box for
confirming the calibration

0 9Setting

xCoreControl System User Manual 151

results, and click "Confirm."
Then, Click the "Next"
button to return to the "New
Work Object" page

5. Click the
"Complete" button to
finish editing the
global work object

9.7.3Global user frame list
9.7.3.1Overview

The global user frame serves as a reference frame when defining the work object frame or global
work object frame and is not used independently.

When establishing a global user frame, you can choose "Calibration now", "Manual input" or "Do not
calibrate".
When "Calibration now" is selected, the 3-point method is used to calibrate. Before calibrating the
global user frame, the user needs to first calibrate a tool and then use the TCP of the tool to calibrate
the user frame. For this, it is recommended to use a tool with tips.
"Manual input" is allowed if the global user frame is known in advance. Another option is "Do not
calibrate", in which case the global user frame is considered as the world frame by default.

0 9Setting

152 xCoreControl System User Manual

9.7.3.2Operation examples
Operation Graphical Representation Explanation

1. Click the "Edit"
button in the
lower-right corner to
edit a global user
frame.

Users with the permission level of
"Programmer" or above can perform
edit operations.

2. Follow the steps
shown in the figure to
perform the
calibration.

Jog the robot to guide the calibrated
tool TCP to sequentially point to the
desired frame's origin, a point on the
x-axis, and a point on the xy-plane or
on the y-axis. Click the "Confirm Point
1", "Confirm Point 2", and "Confirm
Point 3" buttons accordingly.
After successfully confirming all three
points, click the "Calibration" button.

9.8Dynamic settings
The dynamic settings page is used to set the dynamic parameters of the robot. Dynamic settings are
related to functions such as robot force control, drag teaching, virtual walls, and collision detection.
Please ensure the robot's dynamic settings are reasonable. Otherwise, the above functions may not
work properly or may cause the robot to shake abnormally.

9.8.1Dynamic feedforward
The dynamic feedforward switch determines whether the controller turns on or off the dynamic
feedforward function and is turned on by default. Users are not recommended to turn off the dynamic
feedforward function by themselves, which may cause jitter when power on and worse trajectory
accuracy. The dynamic feedforward should be turned off in certain situations, including base frame
calibration when the robot adopts non-front installation and friction identification.

9.8.2Dynamic constraint
The dynamic constraint switch determines whether the controller turns on or off the dynamic
constraint function and is turned on by default. Users are not recommended to turn off the dynamic
constraint function by themselves, which may cause motor overload or abnormal shaking.

When the dynamic constraint switch is turned on, two options including "Nominal Dynamic Params"
and "Factory Identify Dynamic Params" are available. "Nominal Dynamic Params" means nominal
parameters will be used in the dynamic control. The same models using the "Nominal Dynamic
Params" will deliver the exact same motion velocity and takt time when executing the same motion
program, yet the motion performance may be weaker, or there may be motor overload. "Factory
Identify Dynamic Params" will allow the robot to be in the best dynamic control status for the
shortest takt time allowed, and the motor will be protected from overload. But robots running the
same motion program may be slightly different in velocity and takt time.

9.8.3Vibration suppression
The vibration suppression switch determines whether the controller enables the vibration suppression

0 9Setting

xCoreControl System User Manual 153

function, which is disabled by default.

When the vibration suppression switch is turned on, the controller compensates for the flexibility in
the robot joints, suppressing vibrations caused by joint flexibility to improve position and path
accuracy. Changes in the robot's load parameters can affect the amount of joint flexibility
compensation, so it is necessary to set accurate load parameters when using the vibration suppression
function.

Note

1． The vibration suppression setting takes effect immediately without requiring controller reboot.
2． The VibSuppression command can be used in RL Project to modify vibration suppression status

(see Section 15.4.16.39). .
3． Currently, the vibration suppression function is only supported on specific robot models. Refer

to the following table for compatible models.

Table of compatible models for vibration suppression:
PRODUCT LINE MAIN MODEL SUB-MODELS
COLLABORATIVE
ROBOT (6-AXIS)

SR3 All sub-models
SR4 All sub-models
SR5 All sub-models
CR7 All sub-models
CR12 All sub-models
CR18 All sub-models
CR20 All sub-models
CR35 All sub-models

COLLABORATIVE
ROBOT (5-AXIS)

CR17 All sub-models
CR25 All sub-models

INDUSTRIALROBOT
(6-AXIS)

NB4 NB4-R475-3B
NB4h-R580-3B

NB12s NB12s-1214-5A
NB12s-1016-5A
NB12s-1611-5A

NB12h NB12h-1214-6A
NB25s NB25s-1221-67

NB25s-2020-67
NB25s-2518-67
NB25s-3016-67
NB25s-3518-67

NB25h NB25h-2518-77
NB25h-1222-77

NB80s NB80s-8022-21
NB80s-5026-21

XB4h XB4h-R596-3B
XB7s XB7s-R707-3A

XB7s-R906-0A
XB7s-R906-3A

XB10s XB10s-R1206-3B

9.9Body parameters
The body parameters include RD parameters, DH parameters, reduction ratio, overload coefficient,
coupling coefficient, and other robot body related data. The parameters on this page directly affect the
accuracy of the motion. Please do not modify them without the permission and assistance of the robot
manufacturer.
Note: Starting from Version 3.0, all models except for the PCB 3-axis/4-axis models use DH
parameters.

9.9.1RD parameters
RD parameters describes the relative pose relationship between the robot's link frames. They are the
foundation for robot kinematics.

0 9Setting

154 xCoreControl System User Manual

① Import: Click to select the RD parameter file, which is generally not necessary;
② OK: After manually modifying the RD parameters, click "OK" to take effect;
③ Check: After clicking, the current RD parameters and system default RD parameters will

be displayed;

Note:
There will be a set of default parameters before the robot leaves the factory. Users need to confirm the
rationality of RD parameters before modifying or importing parameters. After the RD parameter is
modified, the controller needs to be restarted to take effect.

9.9.2DH parameters
DH parameters describe the relative pose relationship between the robot's link frames. They are the
foundation for robot kinematics.

① Confirm: After manually modifying the DH parameters, click "Confirm" to apply the
changes;

② Check: After clicking, the current DH parameters and system default DH parameters will be
displayed;

Note:
There will be a set of default parameters before the robot leaves the factory. Users need to confirm the

0 9Setting

xCoreControl System User Manual 155

rationality of DH parameters before modifying or importing parameters. After the DH parameters are
modified, the controller needs to be restarted for the changes to take effect.
The DH parameters are of the improved type, and users can only modify the parameters Alpha, A,
and D.

9.9.3Reduction ratio
The reduction ratio is the parameter of the reducer in each axis of the robot. Do not modify without
permission and assistance from the robot manufacturer.

① OK: After manually modifying the reduction ratio parameters, click "OK" to take effect;
② Check: After clicking, the current reduction ratio parameters and system default

reduction ratio parameters will be displayed;

9.9.4Overload coefficient
Motor overload coefficient setting.

① OK: After manually modifying the overload coefficient parameters, click "OK" to take
effect; Please modify it carefully with the support of the manufacturer!

② Check: After clicking, the current overload coefficient parameters and system default
overload coefficient parameters will be displayed;

9.9.5Coupling coefficient
In some robots, each axis has a coupling relationship, while the coupling coefficient describes the
coupling relationship between these axes. Do not modify without permission and assistance from the
robot manufacturer.

9.10Motion parameters
9.10.1Basic motion parameters

Motion parameters include the maximum speed, the maximum acceleration, and the maximum jerk of
each axis of the robot, which affect the motion rhythm and ride of the robot. The robot has a set of
default parameters before leaving the factory. Modifying the above parameters may cause the robot to
shake abnormally, report errors, and affect the service life of the robot. Please modify it carefully.

0 9Setting

156 xCoreControl System User Manual

1 Joint max acc: The upper limit of acceleration for each axis of the robot, which is limited
by the torque capacity of the motor. When the dynamic constraint is turned off, this
parameter takes effect; when the dynamic constraint is turned on, this parameter fails.
This value is generally not less than 3−5 times the maximum axis speed.

2 Joint max jerk: The upper limit of the jerk of each axis of the robot. Under normal
circumstances, with the increase of jerk, the rhythm of the robot will increase to make it
easily shake when moving. If there are many small turning zones in the robot's motion, it
is possible to increase the jerk appropriately to increase the rhythm, but attention should
be paid to the robot's shake. This value shall not less than 3−5 times the maximum axis
acceleration.

3 Joint flexibility coefficient: A coefficient for adjusting the stiffness model of robot joints,
with a configurable range of [0.5−1.2]. Modifying this coefficient will affect both gravity
compensation and vibration suppression performance.
Note:
This value generally does not need to be adjusted, and the default value is enough. In
special circumstances, please modify it under the guidance of the manufacturer.

4 Jog acc ramptime: The time it takes for the robot's acceleration to increase from
minimum to maximum during Jog, which only takes effect in 10 mm step Jog and
continuous mode Jog. The smaller the value, the faster the robot Jog starts and stops, but
the more prone to shake. If the robot reacts slowly when Jog is felt, the value can be
adjusted appropriately.

5 Acceleration rise time: The time it takes for the robot to increase its acceleration from a
minimum to a maximum during motion program execution. The smaller the value, the
faster the robot accelerates, and vice versa.

6 Deceleration rise time during final stop phase: For target points without a turning zone,
this is the time it takes for the robot's deceleration to increase from its minimum value to
0 during the final stop phase. The longer the deceleration rise time, the more gradual and
smooth the robot's stopping will be. If the acceleration rise time is greater than the
deceleration rise time during the final stop phase, the robot will use the longer
acceleration rise time for stopping.

7 VelSmoothCoef: It is used to adjust the speed smoothing process when the robot passes
through the turning zone. The larger the value, the smaller the speed deceleration when
the robot passes through the turning zone, and the easier it is to shake.
When the value is set to 1.0, the velocity is not smoothened when the robot passes
through the turning zone.
This parameter is mainly used to improve the extreme performance of the robot. When
debugging, first confirm the shake of the robot when the value is 1.0: if the robot shakes
violently, it indicates that the robot has reached its extreme performance, and this
parameter does not need to be increased; if the robot runs smoothly but experiences
severe deceleration when passing through turning zones, gradually increasing this

0 9Setting

xCoreControl System User Manual 157

parameter can improve motion smoothness. When debugging this parameter, it is
recommended to gradually increase it in steps of 0.1−0.5.

8 Check: After clicking, the current motion coefficient parameters and system default
motion coefficient parameters will be displayed;

9 Maximum TCP linear velocity: Set the vmax parameter for TCP linear speed
10 Maximum TCP rotation velocity: Set the vmax parameter for TCP rotation speed
11 Maximum external axis linear velocity: Set the vmax parameter for external axis linear

velocity
12 Maximum external axis rotation velocity: Set the vmax parameter for external axis

rotation velocity
13 Position command smoothing parameter: Configure the smoothing level applied by the

controller to the robot's joint position commands, with an adjustable parameter range of
[1−1,024]. When the value is set to 1, the controller applies no smoothing to the joint
position commands. As the value increases, the smoothing level increases, resulting in
smoother and slower robot motion. Modifying the position smoothing parameter affects
both the robot's cycle time and position accuracy.
Note:
This value generally does not need to be adjusted, and the default value is enough. In
special circumstances, please modify it under the guidance of the manufacturer.
Robots using the ARM platform do not support position command smoothing parameter
setting.

14
Sampling points: The larger the value, the smoother and faster the robot motion, but it
will affect the timeliness of logic and signal processing. Note that this value generally
does not need to be adjusted, the default value is enough. In special circumstances,
please modify it under the guidance of the manufacturer.

9.10.2Advanced settings
9.10.2.1Safety control

It supports several stop modes, and the stop parameters of each can be set;

Currently, the deceleration to a complete stop at maximum capability is being used. After receiving
the stop signal, ensure that the robot path is not offset and at least one motor is planned to stop
according to the maximum deceleration capacity.
Considering that the actual performance of different robots can be easily influenced by various
factors under different working conditions, this stopping method permits the configuration of a
scaling factor, which can be set within the range of [0.1, 1]. When it is set to the maximum value of 1,
the robot quickly reaches the motor's maximum capability for deceleration and stopping. When it is
set to the minimum value of 0.1, the robot gradually approaches the motor's maximum capability,
resulting in a smoother deceleration and stop. The larger the scaling factor, the more quickly the robot
reaches the motor's maximum torque value, resulting in a more rapid stop. Conversely, the smaller the
scaling factor, the more gradually the robot approaches the motor's maximum torque value, leading to
a smoother and more gradual stop.
Additionally, the stop coefficient for manual mode (Stop 0) and the stop coefficient for automatic
mode (Stop 1) can be set independently.

9.10.2.2Search command max stop distance
When a Search command is used and the stop mode is selected for a quick stop, the distance traveled
by the robot TCP from the receipt of the stop signal to the full stop of the robot shall not exceed this
value.

9.10.2.3Minimum turning zone radius
The minimum turning zone radius setting defines the shortest permissible turning zone size that can
be generated. This parameter can be used to avoid generating a turning zone too short and to make
motion smoother. When the control system detects that the length of a trajectory is below the set
value of this parameter and the trajectory needs to generate a turning zone, the control system will
automatically combine the trajectory and the adjacent trajectories into one trajectory and generate a

0 9Setting

158 xCoreControl System User Manual

turning zone with an appropriate length. The larger the value, the longer the minimum turning zone
and the smoother the robot passes through the turning zone. When this parameter is set to 0, the
control system strictly follows the parameters to generate the turning zone.

9.10.2.4Stacking debug mode
The stacking debug mode option will only be displayed and available when the model type is CR, SR,
and Industrial Six-Axis Robot (NB, XB) series models. When this mode is turned on, two Jog frames
corresponding to four-axis locking are added: singularity avoidance and parallel base.
Note: CR series 5-axis models turn on this mode by default. At this time, Jog under the base frame
corresponds to the singularity avoidance frame of the 6-axis model.

9.10.2.5Default Conf
The "RL" option in Defualt Conf is used to set whether motion commands strictly adhere to the
movement constraints defined by the Conf information for each point after reloading an RL project.
Note: After modifying this option, you need to run PPTOMAIN to apply the changes and make the
option effective.
The "Point Move to" option in Default Conf is used to set whether motion commands strictly adhere
to the movement constraints defined by the Conf information for each point when performing "Point
Move to" operations.
Note: By default, all the 4 buttons in the Default Conf are enabled until modifications are made in
this interface.

9.11Force control parameters

9.11.1Force control parameters

Force control gain: It is used to adjust the response speed of robot force control. Note that the larger
the value, the faster the robot force control response, but the weaker the anti-interference ability. The
default value is 1.0. If the rigidity of the robot base is low, such as when placing the robot on a mobile
chassis, the force control gain value should be appropriately reduced. When the end-effector load is
close to the upper limit in the load pattern, the use of dragging and impedance may cause shaking, at
this time the force control gain should be appropriately reduced, and the base stiffness should be
adjusted to low if the control system version is below V2.0.
Sensor compensation coefficient: It is used to compensate for sensor error, generally which does not
need to be modified. If there is a force moving in the positive direction of the joint during the robot's
dragging process, this parameter value can be appropriately reduced. On the contrary, if there is a
force moving in the negative direction of the joint, this parameter value can be appropriately
increased. The default value is 0.5.
Friction compensation coefficient: It is used to compensate for friction during dragging and
impedance motion. Too large compensation coefficient may cause instability, so please modify it with
caution. The default value is 0.5.

Note:
Force control parameters are for advanced developers, please modify them carefully.

9.11.2Force control model
There are three options for the force control model, and this function is a developer's option, please
modify it carefully. The default nominal model is used after the initialization and when no

0 9Setting

xCoreControl System User Manual 159

modification is made.

9.11.3Drag optimization
Improve the drag experience by handling the stop at the end of the drag. This function is enabled by
default after the initialization and when no modification is made.

9.11.4Drag without end-effector button operations
The collaborative robot supports dragging operations without the need to press the drag button on the
end-effector. By enabling the automatic drag mode switch, the robot can be directly dragged after
activating the drag mode, without requiring any button presses on the end-effector.

Note:
1. Once the automatic drag mode switch is enabled, ensure safety precautions are followed when
activating the drag mode. If the robot exhibits any abnormal behavior, immediately press the
emergency stop (E-Stop) button;
2. The end-effector drag button becomes inactive once the automatic drag mode switch is enabled.

9.11.5Force control model deviation threshold setting
When the drag mode is enabled, the collaborative robot will self-check the deviation between the
sensor torque and the theoretical dynamics model torque. If the deviation is significant, enabling the
drag mode will fail. If the drag mode still fails to initiate after verifying that the load settings are
correct, you can appropriately increase the force control model deviation threshold.

Note:
1、When the force control model deviation threshold setting is not enabled, the controller uses
default values

9.11.6Dual-channel sensor deviation threshold setting
When the drag mode is enabled, the collaborative robot will self-check the deviation between the
voltage values of the two sensor channels. If the deviation is significant, the drag mode initiation will
fail, and a warning indicating a large voltage deviation will be displayed. In this case, you can
appropriately increase the dual-channel sensor deviation threshold.

Note:
1. When the dual-channel sensor deviation threshold setting is not enabled, the controller uses default

values

9.12Quick adjustment
Users can define multiple commonly used positions. By using buttons or commands, the robot can
quickly adjust its position and orientation (pose). It supports custom poses including the drag pose,
transport pose, and Home pose. The above poses have default values for specific models, and also
support user customization.

0 9Setting

160 xCoreControl System User Manual

The Home pose is quite unique, in addition to defining the reference position, it also requires setting a
set of offsets. When the difference between the robot’s current position and the reference position is
less than the specified offset, the robot is considered to be in the Home pose. In this case, the system
I/O signal "Home State" and the function code register "sta_home" will generate corresponding
outputs.

S/N Name Meaning

①
Reference
Value The reference value of origin for each joint.

② Offset
The float value of the origin range symmetrically around the reference
value. Offset value range: [0.1,30]. For example, if the reference value
is 1° and the offset value is 3°, the origin falls in the range of [-2°,4°].

The relationship between the origin range, the reference value, and the offset value is shown as
follows:

This quick adjustment function also allows rapid adjustment of the end-effector to specified
orientations while maintaining the robot's TCP position and arm angle (the concept of arm angle
applies only to 7-axis robots). The tool quick adjustment offers two configurable options: "Frame
selection" and "Adjustment method".
The Frame selection dropdown includes:

0 9Setting

xCoreControl System User Manual 161

The Adjustment method dropdown includes: (When a frame is selected in the "Frame selection", the
contents of the "Adjustment method" dropdown will change accordingly. The example below shows
the available options of the "Adjustment method" when the world frame is selected in the "Frame
selection")

Procedure:
The usage of the quick adjustment function is similar to JOG operation. The specific steps are as
follows:
1. Ensure that the correct tool and work object are selected;
2. Determine the target pose of the robot’s end-effector;

a) Select the frame: (For example, select the world frame as shown in the figure below)
b) Select the adjustment method: (For example, Align the flange plane parallel to the ground,

as shown in the figure below)
c) Click "Confirm" to apply;

2. Switch to manual mode and power on;

3. Press and hold the "Move to" button. The robot will move to the target pose via joint-space

trajectory;

Note:
1. When using the quick adjustment function to adjust the pose, please turn on the soft limit to

avoid unexpected collisions.
2. The motion speed can be adjusted via the Jog speed. If the power is turned off or the "Move to"

button is released during motion, the robot will stop moving.
3. Use matched tool/work object types (hand-held tool/external work object or hand-held work

object/external tool). Otherwise, motion will be prohibited, and corresponding error prompts
will be displayed for incorrect selection;

4. In the case of an external tool, adjustments perpendicular to the XOY plane of either the world
or base frame are not allowed, and incorrect selections will trigger corresponding error

0 9Setting

162 xCoreControl System User Manual

prompts.

9.13Electronic nameplate
The electronic nameplate designed for some industrial robots is installed in the robot body. It is
mainly used to save the data of the robot body and avoid the loss of basic data after the replacement
of the industrial computer or the controller cabinet.
The software function of electronic nameplates is mainly divided into two parts: Controller and
RobotAssist software. The controller carries out the data reading, verification, and coverage of the
electronic nameplate, while the RobotAssist software issues operation commands related to the
electronic nameplate and displays data.
After the controller is turned on, it will first check if there is an electronic nameplate. If there is an
electronic nameplate, it will read the data normally, perform data verification, and store the
verification result. If there is no electronic nameplate and the user does not choose to use the
electronic nameplate, it will directly operate with the controller data. If there is no electronic
nameplate and the user chooses to use the electronic nameplate, a prompt "there is no electronic
nameplate" will appear. After Robot Assist is connected to the controller, it will first check the
verification results of the electronics nameplate data in the controller, and give different pop-up
prompts based on the verification results. Users can simply follow the pop-up prompts.

If the data in the electronic nameplate is successfully used, it will overwrite the data in the controller
by default.

There are three situations where pop-up prompts appear:
(1) If an electronic nameplate is detected and its data is different from that in the controller, a pop-up
window will prompt "Do you want to use the data in the electronic nameplate?". Select "Yes" to use
the data in the electronic nameplate and "No" to use the data in the controller;
(2) After choosing to use the data in the electronic nameplate once, the electronic nameplate data will
be used by default after restart. If the data in the controller is again different from that in the
electronic nameplate, a pop-up window will prompt, "Do you want to use the data in the electronic
nameplate?";
(3) If the electronic nameplate is not detected during startup, the controller data will be used by
default. If the electronic nameplate data is used once and cannot be detected after restart, a pop-up
window will prompt "Do you want to use the data in the controller?". Select "Yes", the controller data
will be used normally. Select "No", the controller will be in a malfunction state and cannot be
operated. In this case, restart the controller to solve the problem.

Note

When the model data in the electronic nameplate does not match that in the controller, the data in
the electronic nameplate cannot be used. To use the electronic nameplate data successfully, please
ensure the model data in the controller is as same as that in the electronic nameplate.

Click "Settings"->"Electronic nameplate" in turn on the HMI software interface, and the information
in the electronic nameplate will appear. If the controller detects an electronic nameplate, whether the
electronic nameplate is used or not, this interface will display the information of the relevant
parameter segments in the electronic nameplate. The status of the electronic nameplate can be
determined through the status field on this interface, with three parameters representing: electronic
nameplate status, matching of electronic nameplate data with controller data, and whether the "use
electronic nameplate" button is clicked when starting up (as long as the "use electronic nameplate
data" button is clicked, regardless of whether the data is successfully used, this position will be
displayed as used), as shown in the following figure:

If an electronic nameplate is not detected during startup, the interface is as shown in the figure below:

Function Explanation
Export RC Export the data of relevant parameter segments in the controller to a file

Export nameplate Export the data in the electronic nameplate to a file

0 9Setting

xCoreControl System User Manual 163

Refresh Synchronize the information of the electronic nameplate
Basic information The parameter segments about the basic information of the electronic

nameplate. It is unable to be modified manually
Battery voltage The actual battery voltage of the encoder. It is measured during startup

and every 24 hours after a startup. It is unable to be modified manually
Running time When the motor runs, the running time increases accordingly. The value

is refreshed every hour on the interface. This parameter cannot be
modified manually;

Mechanical zero
parameters and

kinematic parameters

The current values of the controller and the electronic nameplate will be
displayed on the interface, respectively. This parameter cannot be
modified manually;

Dynamic parameters The parameter segment is not displayed on the interface;
Overwrite electronic
nameplate data

Overwrite the data in the electronic nameplate with the data in the
controller.

Note

1. All exported data are encrypted.
2. When the electronic nameplate is used, the controller automatically synchronizes the modified
data to the electronic nameplate after the robot performs zero calibration, robot parameter
modification, or dynamic parameter identification.

9.14Error code alarm filtering
When an error level alarm occurs in xCore, it will trigger the system IO or register output high level
bound to the alarm state. If the customer does not want certain alarms to trigger alarm state outputs
(system IO or registers), this function can be used for setting.

0 9Setting

164 xCoreControl System User Manual

9.15Custom buttons
By custom buttons, some convenient functions can be bound to several physical buttons on xPad2.

① The positions of these 8 buttons can be customized;

②
Key content: Users may set the button name, which is displayed below the corresponding
button icon. Names should not be too long to avoid incomplete display.

③
Bind function: There are several functions for selecting, including "Empty, Forced DO,
Forced DI, Screenshot, Soft Keyboard, Initial Pose, Drag and Drop Pose, Delivery Pose,
User Pose, and Screen Lock (only supporting for xPad2 Teach Pendant)".

④

Trigger type: It includes press for enabling, short press for triggering, and long press for
triggering.
Press for enabling means that pressing the button enables the corresponding function.
Short press for triggering means that pressing the button immediately triggers the bound
function. Long press for triggering means that pressing and holding the button for a long
time triggers the bound function, with the long press time settable. Different bound
functions have various triggering modes.

⑤
Press time: After selecting "long press for triggering," the long press time is set in
seconds, with a range of [0.5, 5].

⑥
Connect signal: When the bound function is "forced DO" and "forced DI", the signal can
be selected here.

⑦

Signal action: When the bound function is "Forced DO" and "Forced DI", the signal
change is detected by the signal behavior, supporting "0", "1", and "Alternate." "0" refers
to after triggering, the corresponding signal is set to 0, while "1" means after triggering,
it is set to 1. "Alternate" represents that after triggering, if the current signal is 0, it is set
to 1, and vice versa.

⑧ OK: The modification of the custom button will take effect after clicking "OK".

9.15.1Custom button disable function
This function is primarily used to prevent accidental triggering of physical buttons on the custom
page. Users can customize the enable/disable status of physical buttons on the custom page.

0 9Setting

xCoreControl System User Manual 165

This function includes the following parts:
① Custom physical button enable button: Control the enable/disable relationship of physical button
switches across pages.
When the enable button is turned off, all Physical button switches below the enable button are
deactivated, and the physical buttons on all pages remain active.
When the enable button is turned on, only physical buttons on the selected pages of Physical button
switch module become active.
② Physical button switch module: These switches become active only when the enable button is
turned on; checking the box before a specific page indicates that the physical button functions on that
page are effective.
③ Save button: Modified states are applied only after clicking the Save button.

9.15.2Custom button - Insert Next Row
This function is designed for industrial robots and provides four configurable custom button functions.
The custom button configuration feature is not displayed on the interface of collaborative robots.

0 9Setting

166 xCoreControl System User Manual

This function includes the following parts:
① Custom button style display module: Used to display the names and icons of configured function
buttons, with numeric identifiers that correlate to corresponding functions in the right-side table.
② Custom function design table: Allow switching the style and function of custom buttons by
modifying the "Bound Function" column.
③ Save button: Modified table configurations will only be saved and applied after clicking the Save
button.
④ Custom button function module: The part of the software where the configured custom button
functions can take effect.

0 10Communication

xCoreControl System User Manual 167

10Communication
10.1Introduction to this chapter

This chapter mainly introduces various communication settings of the xCore control system,
including system IO, registers, bus devices, and end-effector.

10.2System IO
System IO is divided into two types: system input and system output. The external controller can send
various commands to the xCore control system through system input, such as power-on of the motor,
start-up of the program, and emergency stop reset. The xCore system can also use system output to
send robot status to the outside world, such as power on/off status and operating status.

10.2.1System input
On the HMI main interface, click "Communication" -> "System IO" to enter the system IO settings
interface, and click the "System Input" tab to enter the system input configuration interface, as shown
in the following figure:

The system inputs supported by the xCore control system are as follows:
System Input Trigger Method Remarks
Motor on Posedge/Negedge
Motor off Posedge/Negedge

Start program Posedge/Negedge

After triggering the function code, if the teach
pendant displays the alarm "Program not
synchronized to controller, startup failed",

synchronize the program and retrigger the function
code.

Program pause Posedge/Negedge

Program pause 1 Posedge/Negedge This function serves the same purpose as the "Pause
Program" function

Switch auto Posedge/Negedge It is effective in manual mode
Switch manual Posedge/Negedge

Auto and power Posedge

It is effective in manual mode and switches to
automatic mode and power on. The robot does not
respond to the command when it is in power-on

mode.
PP to main Posedge

Motor on & run Posedge

Power on, pptomain, and running in order.
After triggering the function code, if the teach
pendant displays the alarm "Program not
synchronized to controller, startup failed",

synchronize the program and retrigger the function
code.

Motor on & continue Posedge

Power on and running in order.
After triggering the function code, if the teach
pendant displays the alarm "Program not
synchronized to controller, startup failed",

0 10Communication

168 xCoreControl System User Manual

synchronize the program and retrigger the function
code.

Pause & motor off Posedge Pause, wait for the robot to stop, and power off
Enter the reduced

mode Posedge/Negedge Collaborative robot only

Exit the reduced mode Posedge/Negedge Collaborative robot only

Open drag Posedge/Negedge Collaborative robot only. It is required to enable
Drag mode on the interface

Close drag Posedge/Negedge Collaborative robot only. It is required to enable
Drag mode on the interface

Emergency reset Posedge
Clear alarm Posedge

Emergency & clear
alarm Posedge

Note:
 All system inputs are pulse-triggered. To ensure that the xCore system receives external

commands correctly, please ensure that the pulse width of the external input is not less than 300
milliseconds.

 There is a corresponding relationship between the functions that support the triggering of the
posedge and negedge (power on, power off, manual mode, automatic mode, start program,
pause program, enter collaboration mode, exit collaboration mode, startDrag, and stopDrag) to
ensure safety, for example, the functions of "power on" and "power off" are corresponding. If
DI1 is selected for "power on", DI1 cannot be used for functions other than "power off".

 Most system input function is only valid in Automatic mode, and the signal from the system
input in manual mode will be ignored.

 It is not allowed to start the program through any ways when the register equipped with the
pause function or system IO has not been reset.

 The “Pause Program” and “Pause Program 1” functions serve the same purpose. Either function
will pause the program upon triggering from any signal path.

10.2.2System output
On the HMI main interface, click "Communication" -> "System IO" to enter the system IO settings
interface, and click the "System Output" tab to enter the system output configuration interface, as
shown in the following figure:

The system outputs supported by the xCore system are as follows:

System Output Valid Output Invalid Output Remarks
Motor state Motor power-on Motor power-off
Running state Program running Program not running

Moving state Moving Stationary

Only detect the robot's motion status when
detecting motion commands and Jog in the

RL program. (Note: In identification,
dragging, force control, and drag playback,
even if the robot is in motion, the output is

still stationary.)

0 10Communication

xCoreControl System User Manual 169

Operate mode Switch auto Manual mode/Wait mode

EStop state EStop state Non emergency stop

The output of this state is affected by the
"Emergency Stop Trigger Level Type"

setting. When it is set to high level, the output
is valid when triggering a soft emergency

stop, and invalid when not triggered; when it
is set to low level, the output is invalid when
triggering a soft emergency stop, and valid

when not triggered.
Collision opening Open Close Cobots only

Collision
detection Triggered Not triggered Cobots only

Collision alarm Collision detection alarm
triggered Alarm reset Cobots only

Reduced mode
state Reduced mode triggered Reduced mode not

triggered Cobots only

Alarm state Alarm state No alarm
Servo encoder
low battery Low voltage alarm Normal voltage

Home state Each joint of the robot is at
Home

Each joint of the robot is
not at Home

Heart beat Heart beat Click "Settings −> Controller Settings" and
set the heartbeat cycle

Robot startup
finish

The robot controller
finishes the power-on

The robot controller does
not finish the power-on

Safety door Safety gate opened Safety gate closed
Program reset Program reset Program not reset
External estop

state
External estop state Non-external estop state The safeboard adopts a mini board, and the

firmware version is not less than 1.0.8.7
Handheld estop

state
Handheld estop state Non-handheld estop state The safeboard adopts a mini board, and the

firmware version is not less than 1.0.8.7
PPTOMAIN
execution state

The current program is
executing pptomain

The current program is
not executing pptomain

Soft E-stop trigger
state

Soft E-stop trigger state Soft E-stop not triggered

On planned path Robot's current position is
on the planned path

Robot's current position is
not on the planned path

Refer to register function code "sta_on_path"
for detailed usage

Near planned path Robot's current position is
near the planned path

Robot's current position is
not near the planned path

Refer to register function code
"sta_near_path" for detailed usage

Note:
 The system output status is valid in both manual and automatic modes. However, for safety and

availability considerations, these signals are only to be used when the xCore is in Automatic
Mode.

 After an IO point is bound to the system IO, it cannot be forced to output or simulate input
operations.

 All other system output signals are active at a high level except the "Operating Mode" signal.
 For the signal "Operating Mode", the output is at a high level in Automatic mode and low in

Manual mode.

10.3External communication
10.3.1Overview

The xCore system provides a Tcp Socket-based external communication interface supporting both
server and client through which host systems (PLC, MES, etc.) can send control commands to the
robot or obtain the robot status.

10.3.2Configurations
Before using the interactive commands, configure the parameters related to the Socket
communication and enable the function. The configuration interface is located in HMI ->
"Communication" -> "External Communication", as shown in the following figure:

0 10Communication

170 xCoreControl System User Manual

Note:
The Socket communication interface supports the robot to serve as a client or server, but only one
state at a time.

When the robot is used as a client, the following parameters need to be configured:
Parameters Explanation

IP Server IP, such as the IP address of the connected PLM and MES systems.
Port Server-side listening port

Suffix When the server sends control or monitoring commands to the robot, an
additional suffix character is required at the end of the command. They are

0 10Communication

xCoreControl System User Manual 171

typically simple terminators such as \r, \n, or \t. Please note that combined
suffixes can be used here without limitation on length, such as \r\n, \r\t, or \r\n\t.
Visible characters such as letters can also be used.

The robot used as a server supports multiple connections. In this case, please pay attention to the
control sequence on the client side to avoid any conflict. The following parameters need to be
configured:

Parameters Explanation
Port Server-side listening port

Suffix

When the server sends control or monitoring commands to the robot, an
additional suffix character is required at the end of the command. They are
typically simple terminators such as \r, \n, or \t. Please note that combined
suffixes can be used here without limitation on length, such as \r\n, \r\t, or \r\n\t.
Visible characters such as letters can also be used.

Note

To ensure the stability of the robot's motion control, the control system allocates only a portion of
its computational resources to network communication functions. When the robot acts as a socket
server listening for connections, if it receives extremely frequent network connection requests or
data streams resembling a "DDoS attack", this may cause the robot's network connections to
external devices (such as the teach pendant and other equipment) to disconnect or result in
operational lag.

Network connection or data interaction frequency must remain below 1 per millisecond (1/ms).

10.3.3Interactive commands
Interactive commands include control commands and monitoring commands.
The following table gives the specific command content and format. (Assuming the user uses "\ r" as
the specified command terminator, "\ r" is an escape character representing carriage return, and the
decimal value is 13).

Control commands:
Command name String sent Return value Remarks

Close the socket
interface

“xCore::SocketInterface::Disabl

e” +“\r”
No return value

Start the socket
interface

“xCore::SocketInterface::Enabl

e” +“\r”
No return value

Start program “start”+“\r” "true" if success;
"false" if failed

It is not allowed to
start the program
through system IO
when the register
equipped with the
pause function or
system IO has not
been reset;
After triggering the
function code, if the
teach pendant
displays the alarm
"Program not
synchronized to
controller, startup
failed", synchronize
the program and
retrigger the
function code;

Stop program “stop”+“\r” "true" if success;
"false" if failed

Clear servo
alarms “clear_alarm”+”\r” "true" if success;

"false" if failed
Program pointer “pp_to_main”+“\r” "true" if success;

0 10Communication

172 xCoreControl System User Manual

to main "false" if failed

Motor power-on “motor_on”+“\r” "true" if success;
"false" if failed

Motor
power-off “motor_off” + “\r” "true" if success;

"false" if failed
Switch to
Manual mode “switch_mode:manual”+”\r” "true" if success;

"false" if failed
Switch to
Automatic
mode

“switch_mode:auto”+”\r” "true" if success;
"false" if failed

Enable Drag
mode “open_drag”+”\r” "true" if success;

"false" if failed
Collaborative robot
only

Disable Drag
mode “close_drag”+”\r” "true" if success;

"false" if failed
Collaborative robot
only

Obtain project
list list_prog + “\r”

Return to project list;
"null" if no project is
returned

Obtain current
project current_prog + “\r”

Return to current load
project;
"null" if no project is
returned

Switch to
project

load_prog + (project name) +

"\r"
"true" if success;
"false" if failed

Set DO value
"setdo:" + "IO name, IO value"

+ "\r"
"true\r" if successful
"false\r" if not found

"setdo:
DO0-0,true\r"
(pay attention to
English
punctuation)

Update the time
on the controller
and teach
pendant

set_robot_time:time + "\r" (time

format:YYYY-MM-DD

hh:mm:ss)

"true" if success;
"false" if failed

Emergency
reset estop_reset + “\r” "true" if success;

"false" if failed

(RSC only, not
applicable to mini
board)

Emergency &
clear alarm

estopreset_and_clearalarm

+“\r”
"true" if success;
"false" if failed

Power on,
program pointer
to main, and
start program in
order

motoron_pptomain_start +“\r” "true" if success;
"false" if failed

After triggering the
function code, if the
teach pendant
displays the alarm
"Program not
synchronized to
controller, startup
failed", synchronize
the program and
retrigger the
function code;

Power on and
start program in
order

motoron_start +“\r” "true" if success;
"false" if failed

After triggering the
function code, if the
teach pendant
displays the alarm
"Program not
synchronized to
controller, startup
failed", synchronize
the program and
retrigger the
function code;

Pause program
and power
down in order

pause_motoroff +“\r” "true" if success;
"false" if failed

Set program set_program_speed: +program "true" if success;

0 10Communication

xCoreControl System User Manual 173

running rate speed +"\r" "false" if failed

Trigger and
release robot
soft E-stop

set_soft_estop:true/false +“\r” "true" if success;
"false" if failed

Execute switch
to automatic
mode and then
power on

switch_auto_motoron +“\r” "true" if success;
"false" if failed

Open the
corresponding
safe region

open_safe_region: +safe region

index+"\r"
"true" if success;
"false" if failed Index range [1−10]

Close the
corresponding
safe region

close_safe_region: +safe region

index+"\r"
"true" if success;
"false" if failed Index range [1−10]

Enable reduced
mode open_reduced_mode +“\r” "true" if success;

"false" if failed
Disable reduced
mode close_reduced_mode +“\r” "true" if success;

"false" if failed

Monitoring commands:
Command name String sent Return value Remarks

Motor power
state “motor_on_state” + “\r”

"true" if success, motor
power-on;
"false" if failed, motor
power-off;

Program status “robot_running_state” +
“\r”

"true" if success, running;
"false" if failed, not running;

EStop state “estop_state” + “\r”

When the emergency stop
trigger level type is set to
high: true, emergency stop;
false, non-emergency stop.
When the emergency stop
trigger level type is set to low:
true, non-emergency stop;
false, emergency stop.

The return value of
this state is affected
by the "Emergency
Stop Trigger Level
Type" setting. When
it is set to high
level, the output is
valid when
triggering a soft
emergency stop, and
invalid when not
triggered; when it is
set to low level, the
output is invalid
when triggering a
soft emergency
stop, and valid
when not triggered.

Fault “fault_state” + “\r” "true" if success, fault;
"false" if failed, non-fault;

Operating mode “operating_mode” +
“\r”

"true" if success, automatic
mode;
"false" if failed, manual
mode/wait mode;

Get Cartesian
position “cart_pos” + “\r” Cartesian position string +

"\r";
Get Cartesian
position “cart_pos_name” + “\r” "cart_pos: " + Cartesian

position string + "\r";
Get axis
position “jnt_pos” + “\r” Axis position string + "\r";

Get axis
position “jnt_pos_name” + “\r” "jnt_pos: " + axis position

string +"\r";
Get axis
velocity “jnt_vel” + “\r” Axis speed string + "\r"; Unit: rad/s

Get axis
velocity “jnt_vel_name” + “\r” "jnt_vel: "+ axis speed string

+ "\r"; Unit: rad/s

Get axis torque “jnt_trq” + “\r” Axis torque string + "\r"; Unit: N.m
Get axis torque “jnt_trq_name” + “\r” "jnt_trq:" + axis torque string Unit: N.m

0 10Communication

174 xCoreControl System User Manual

+ "\r";
Home state
output “home_state” + “\r” "true" with output;

"false" without output
Collision
detection state “collision_state” + “\r” "true" if trigger collision;

"false" if no collision
Collaborative robot
only

Obtain robot
task state “task_state” + “\r”

The task currently performed
by the robot. These include:
ready;
jog;

load_identify;

dynamic_identify;

drag;

program;

demo;

rci;

debug;

Please refer to the
"HMI Introduction"
for the icon and
description of the
current status of the
robot

Obtain alarm
state “alarm_state”+”\r” "true" if there is an alarm,

"false" if no alarm is present
Obtain collision
detection alarm
state

“collision_alarm_state”
+ ”\r”

"true" if there is an alarm,
"false" if no alarm is present

Obtain collision
detection enable
state

“collision_open_state”
+ ”\r”

"true" if collision detection is

enabled
"false" if it is not enabled

Check if the
controller is
powered on

“controller_is_running”
+ ”\r”

"true" if powered on
"false" if not powered on

Low-voltage
alarm state of
encoder

“encoder_low_battery_s
tate”+ ”\r”

"true" if there is a low voltage

alarm
"false" if there is no low
voltage alarm

Obtain robot
error code

“robot_error_code”
+ ”\r”

"robot error code" if an error

is present
"0" if there is no error

Obtain pause
state of RL “program_full” + ”\r”

Pause state of RL, including:

0: initialization state;

1: RL running;

2: HMI paused;

3: system IO paused;

4: register function code

paused;

5: external communication

paused;

6: DK paused;

7: paused by Pause command;

10: emergency stop;

11. safety gate;
12. paused due to other
factors.

Obtain program
reset state

“program_reset_state”+
”\r”

Output "true" if the program
pointer is at the first line of
the main function and the
program has not started

0 10Communication

xCoreControl System User Manual 175

running; otherwise, output
"false"

Obtain the
actual speed of
the current
program
execution

“program_speed” + “\r”
Actual speed of the current
program execution Range: 1
to 100

Obtain program
busy state “robot_is_busy” + “\r” "true" if currently in pptomain

Otherwise, "false"

Obtain whether the
robot is executing
time-consuming
operations such as
pptomain

Obtain whether
the robot is in
motion

“robot_is_moving”
+ ”\r”

"true" if the robot is moving
Otherwise, "false"

Obtain safety
gate state “safe_door_state” + ”\r” "true" if safety gate is open

Otherwise, "false"
Obtain soft
E-stop trigger
status

“soft_estop_state”
+ ”\r”

"true" if the soft E-stop is
triggered; otherwise, "false"

Obtain
Cartesian
velocity

“cart_vel” + “\r” Cartesian velocity+"\r"

Obtain the pose
of the robot's
TCP

“tcp_pose” + “\r” Pose of the robot's TCP+"\r"

Obtain the
velocity of the
robot's TCP

“tcp_vel” + “\r” Velocity of the robot's
TCP+"\r"

Obtain the
composite linear
velocity of the
robot's TCP

“tcp_vel_mag” + “\r” Composite linear velocity of
the robot's TCP+"\r"

Obtain external
E-stop state “ext_estop_state” + “\r”

"true" if the external E-stop is
triggered
"false" if it is not triggered

The safeboard is a
mini board, and the
firmware version is
not less than 1.0.8.7

Obtain handheld
E-stop state

“hand_estop_state” +
“\r”

"true" if the handheld E-stop
is triggered
"false" if non-handheld E-stop
is triggered

The safeboard is a
mini board, and the
firmware version is
not less than 1.0.8.7

Obtain
collaboration
mode state

“collaboration_state” +
“\r”

"true" if collaboration mode is
triggered
"false" if non-collaboration
mode is triggered

Obtain reduced
mode state

reduced_mode_state +
“\r”

"true" if it is enabled; "false"
if it is not enabled

Obtain IO state
io_state: + IO names
(multiple IOs separated
by commas) + "\r"

Return IO values as "true" or
"false"; "null" if the
corresponding IO is not found

On path
verification “sta_on_path” + “\r” "true" if on path

"false" if off path

Refer to register
function code
"sta_on_path" for
detailed usage

Near path point
verification “sta_near_path” + “\r” "true" if near path point

"false" if not near path point

Refer to register
function code
"sta_near_path" for
detailed usage

Note:
String format Unit

Cartesian
position x, y, z, a, b, c, q1, q2, q3, q4

x, y, and z in mm;

a, b, and c in degree;

Q1~q4 are orientation quaternions;

0 10Communication

176 xCoreControl System User Manual

Axis position j1, j2, j3, j4, j5, j6, j7 Robot axis angle in rad;
Track position in m;

Axis velocity vj1, vj2, vj3, vj4, vj5, vj6, vj7
Robot velocity angle in rad/s;

Track velocity in m/s;

Axis torque tj1, tj2, tj3, tj4, tj5, tj6, tj7
The unit of the robot axis and track
torque is the thousandth of the rated
torque of the motor;

10.4Bus devices
10.4.1Overview of bus devices

CC-Link, Modbus, EtherCAT, and PROFINET are supported.
CC-Link includes CC-Link devices (connected via EtherCAT) and CC-Link IE Field Basic.
EtherCAT can be used to expand bus modules such as IO modules, PROFINET, and EtherNet/IP.

Supported
Bus

Protocol Supported method Remarks

Modbus
TCP Master and slave
UDP Not supported
RTU Master and slave Industrial robots only

CC-Link 485 Remove device station (slave) Industrial robots only
IE Field Basic Remove device station (slave)

The following function codes are supported in Modbus:
Function code Meaning Supported

0x01 Read coil Supported
0x05 Write a single coil Supported
0x0F Write multiple coils Supported
0x02 Read discrete input Supported
0x04 Read input register Not supported
0x03 Read holding register Supported
0x06 Write a single holding register Supported
0x10 Write multiple holding registers Supported

10.4.2Bus devices parameter configuration
The page is at: "Communications" -> "Fieldbus Devices". The page is divided into two parts. The
upper part manages all bus connections and allows for individual opening and closing operations for
each bus connection. When the bus connection is closed, the IO configured for this connection will
not be displayed in "Status Monitoring" -> "IO Signal". The lower part is the attribute parameters of
the currently selected bus device.

① List of bus devices.
② The parameters of the currently selected bus device.

0 10Communication

xCoreControl System User Manual 177

③ The bus device operation buttons, from left to right, are Create, Edit, and Delete.

Parameter
Name Parameter Explanation

Name

The name is used when configuring "IO Device" and "Register."
For example, the names in the following figure are modbus_0, modbus_1,
modbus_2, and cclink_3.

As shown in the figure below:

 "IO device config" name field is used in IO device configuration to indicate

which bus the IO device is related to;

 "Register" name field is used in Register to indicate which bus the register is

related to;

Type

It can be selected when adding/editing a bus device. Only CC-Link, Modbus,
EtherCAT, and PROFINET are supported. Note:
 CC-Link includes CC-Link devices (connected via EtherCAT) and CC-Link IE

Field Basic.
 EtherCAT can be used to expand bus modules such as IO modules, Profinet,

and EtherNet/IP.
Mode It indicates whether the current robot is acting as a master or slave on the bus.

Endian

It is mainly for registers. Since each register occupies 2 bytes, there are many
hexadecimal sequences of the two bytes. This attribute needs to correspond to the
master and the slave, otherwise, the data will not meet the expectations. Four types
of endianness are supported: ABCD, CDAB (default), BADC, and DCBA.

Enabling
button

The bus function can be enabled or disabled through this button. Each bus device to
be enabled or disabled individually is supported.

0 10Communication

178 xCoreControl System User Manual

Note: After a bus device is disabled, the IOs configured on the bus device will not be
displayed in "Status Monitoring" -> "IO Signal".

10.4.2.1Modbus communication

On the bus device page, click on the bottom right corner to enter the new
communication bus device page, and select the device type as "MODBUS". It supports the TCP and
RTU protocol, and the device can be configured as a master or slave.

10.4.2.2Modbus TCP configuration

Parameter Introduction

Type "master", the robot serves as a master; "slave", the robot acts as a
slave;

Slave ID

When the robot serves as a slave, ensure that the overall configuration
of the bus does not conflict with other slaves.
When the robot serves as a master, it indicates the target slave ID that
the robot expects to communicate with.
Note: When the robot serves as a master, it only supports single-slave
communication with external devices;

TCP/IP

When the robot serves as a slave, fill in 0.0.0.0, which means all
network cards are monitored.
When the robot serves as a master, fill in the IP address of the target
slave ID that the robot communicates with;

TCP port The port number when the slave uses the TCP protocol.

Holding register start
address

The start address of the register affected by the function codes 0x03,
0x06, and 0x10. Each register occupies 2 bytes.
For write-only registers, when the robot acts as a slave, the holding
register function code is 0x03, and when the robot acts as a master,
the holding register is 0x06 or 0x10.
For read-only registers, when the robot acts as a slave, the holding
register function code is 0x06 or 0x10, and when the robot acts as a
master, the holding register function code is 0x03.

Holding Registers
Number

The number of holding registers from the holding register start
address.

Coil start address The start address of the register affected by the function codes 0x01,
0x05, and 0x0F.

Coils Number The number of coil registers from the coil start address.
Discrete Input Start

Address
The start address of the register affected by the function code 0x02.

Discrete Input
Number

The number of discrete input registers from the discrete input start
address.

10.4.2.3Modbus RTU configuration

0 10Communication

xCoreControl System User Manual 179

The Modbus RTU conception is partly the same as the Modbus TCP conception, which will not be
repeated here. Only the differences are described as follows:
RTU serial port name: Indicates the serial port medium used for bus communication. Configure it in
"Communication" -> "Serial Port Configuration", including the parameters for communication.

10.4.2.4CC-Link communication

On the bus device page, click on the bottom right corner to enter the new
communication bus device page, and select the device type as "CCLINK". It supports the CC-Link
and CC-Link IE Field Basic protocol, and the device can be configured as slave only.

10.4.2.5CC-Link configuration
Parameter Introduction

Protol type cclink_ie means the CC-Link IE Field Basic communication protol that
directly uses the robot's Ethernet port.

cclink_ie NetCard Configure which Ethernet card is used for communication.
cclink_ie Occupied
Station Number

1 to 16 occupied stations can be configured. The default number is 4.
Default values are recommended.

cclink_ie Protol Version Ver1 or Ver2 is optional. Please ensure that it is consistent with that of
the master.

10.4.2.6EtherCAT communication

On the bus device page, click on the bottom right corner to enter the new
communication bus device page, and select the device type as "ETHERCAT". EtherCAT can be used
to access PROFINET and EtherNet/IP gateway modules.

0 10Communication

180 xCoreControl System User Manual

Slaver Address: The slave address number in the EtherCAT bus topology.
Note: Since the EtherCAT slave address number 1000-4000 is occupied by the robot internal devices,
to avoid device address conflict, the EtherCAT slave address number of extended devices should not
be less than 5000.

10.4.2.7PROFINET communication

On the bus device page, click on the bottom right corner to enter the new
communication bus device page, and select the device type as "PROFINET". The device can be
configured as a slave only. One PROFINET slave can be configured for one robot, and multiple
robots can join the same PROFINET network by modifying the PROFINET slave name to enable
multiple slaves. The model selected for Slots 1-6 should be consistent with the correspondent-side
configuration.

Parameter explanation:
Parameter Explanation
Device
type Select PROFINET.

Name Equipment code.
Type Only slaver is supported.

Endian Select DCBA generally, depending on the agreement between the communicating
parties.

Station
name

PROFINET slave name. It should be consistent with the correspondent-side
configuration. Chinese characters, uppercase letters, and underlines are not allowed.

0 10Communication

xCoreControl System User Manual 181

NetCard Select the network port to connect to the correspondent; includes the network card IP
and name.

Update
period Default to 10ms, minimum 2ms.

Slot 1
type

Only DO_256 model can be selected, indicating that 256 digital quantities are output
from the robot to the correspondent via slot 1.

Slot 2
type

Only DI_256 model can be selected, indicating that there are 256 digital inputs from
the correspondent to the robot via slot 2.

Slot 3
type

The option models include AO_Int16_8/ AO_Int16_16/ AO_Int16_32/ AO_Int16_64/
AO_Int16_128/ AO_Int16_256.
AO_Int16_8 means that there are 8 int16 analog outputs from the robot to the
correspondent via slot 3, and so forth.

Slot 4
type

The option models include AI_Int16_8/ AI_Int16_16/ AI_Int16_32/ AI_Int16_64/
AI_Int16_128/ AI_Int16_256.
AI_Int16_8 means that there are 8 int16 analog inputs from the correspondent to the
robot via slot 4, and so forth.

Slot 5
type

The option models include AO_Float32_8/ AO_Float32_16/ AO_Float32_32/
AO_Float32_64/ AO_Float32_128/ AO_Float32_256.
AO_Float32_8 means that there are 8 float32 analog outputs from the robot to the
correspondent via slot 5, and so forth.

Slot 6
type

The option models include AI_Float32_8/ AI_Float32_16/ AI_Float32_32/
AI_Float32_64/ AI_Float32_128/ AI_Float32_256.
AI_Float32_8 means that there are 8 flaot32 analog inputs from the correspondent to
the robot via slot 6, and so forth.

10.4.2.8Ethernet/IP communication

On the bus device page, click on the bottom right corner to enter the new
communication bus device page, and select the device type as "EtherNetIP". The device can be
configured as a slave only. A single robot supports the configuration of one EtherNet/IP slave station.

Parameter explanation:
Parameter Explanation
Device type That is, EtherNetIP.

Name Bus device name, cannot be the same as the names of other bus devices.
Mode Only slaver is supported.

Endian Select CDAB generally, depending on the agreement between the
communicating parties.

NetCard
Select the name of the network card connecting to the EtherNet/IP master
station. The dropdown box will display the IP address and name of the
network card.

Read-only Registers
Number

Number of read-only registers for the EtherNet/IP slave station: Each
register represents 2 bytes. Options are 32, 64, 128, and 248 registers.

Write-only Registers
Number

Number of write-only registers for the EtherNet/IP slave station: Each
register represents 2 bytes. Options are 32, 64, 128, and 248 registers.

0 10Communication

182 xCoreControl System User Manual

Notes:
 Only one EtherNet/IP bus device is supported. Attempting to create more will result in an error

message.
 Register addresses start from 0. If 32 is selected, it indicates that the device has registers with

addresses from 0 to 31. When configuring register mappings in the "Registers" interface, pay
attention to the address range.

 Read-only and write-only are defined from the perspective of the xCore control system:
Read-only registers correspond to EtherNet/IP master Output data; write-only registers
correspond to EtherNet/IP master Input data.

 The number of read-only and write-only registers also represents the amount of communication
data. The more data, the greater the communication load. Therefore, it is recommended to
select the smallest number of registers that meets the requirements.

 The number of bytes for Input and Output data configured in the master station should match
the number of bytes contained in the write-only and read-only registers of the slave station,
respectively. Otherwise, communication may fail.

 The read-only and write-only registers of the EtherNet/IP bus device are two separate data areas.

The addresses for configured read-only and write-only registers can overlap.
 The EtherNet/IP slave station of the xCore control system does not provide an EDS file by

default. Its Input Assembly Instance ID is 1, and its Output Assembly Instance ID is 2. The
master station must match these settings during configuration; otherwise, communication may
fail.

10.5Register
10.5.1Overview of registers

The register represents the available variables within a robot, which are generally used for data
communication with external devices, so as to control the robot and obtain its status. The register can
also be used as a variable in the current RL project. The register variables can be operated by
commands or assignments.
Note:
 The register is a concept of robots themselves, rather than belonging to bus devices. A register

can be created or edited by specifying which bus device it is bound to for communication.
 Each register occupies 2 bytes. For different types of variables, the number of registers

occupied is different.

10.5.2Register parameter configuration
On the "Communication" -> "Register" page, you can view existing registers and perform Add, Edit,
and Delete.

① Register list.
② Register import and export button, click to switch to the register import and export page,

and perform import and export.
③ The register operation buttons, from left to right, are Create, Edit, and Delete.

0 10Communication

xCoreControl System User Manual 183

Parameter Explanation

Name

In RL, register variables can be accessed through this name.
Note: The list cannot have duplicate names, nor can it have duplicate names
with any variables in the RL list. Otherwise, RL will have variable conflicts,
which may result in unpredictable consequences.

Type bit, byte, bool, int16, float, and int32 are supported.

Start Address

The register addresses of the same read and write attributes in the same bus
device cannot be cross-occupied, and the register addresses of different read
and write attributes in the Modbus bus device cannot be cross-occupied.
For example, if one register occupies 41000-41003, another register cannot
start from 41002.

ReadWrite

ReadWrite attribute, indicating whether the register is read or written from
the robot's perspective (not from the master or slave's perspective).
Write-only registers are used for robot external output status; read-only
registers are used by robots to obtain commands sent from external devices.

IsRetain

When the register is set to hold, the value of this IsRetain on a non-volatile
storage medium during robot restart, shutdown, power outage, or RL stop.
When the robot powers on again or RL is running again, the value of register
is restored to the value held before the robot shuts down or RL is stopped.

Length

The length represents the number of variables. For variables greater than 1,
variable references can be made using arrays, with subscripts starting from
1.
Note: It is different from the number of registers. For example: Registers
40140−40153, the variable type is float, and each float occupies 2 registers
with a size of 7. Therefore, the number of registers occupied is 2 * 7 = 14.

Bit Bias

Bit Bias represents the position of the bit type register mapped to the
register. A register occupies two bytes, which is 16 bits, and the bit offset
refers to the position of the corresponding register, with an offset value of
1−16. When creating a bit type register, the bias value can be set if the
element number is 1, on the contrary, it cannot be set.

Byte Bias

Byte Bias represents the position of the Byte type register mapped to the
register. A register occupies two bytes, which is 16 bits, while a byte variable
only requires 8 bits. Therefore, when creating a byte register variable, it is
necessary to choose whether to map to 8 bits of LSB (1−8) or 8 bits of MSB
(9−16) of the register.

End Address

The end address represents the last register address occupied by the register
variable. When the register variables are arranged continuously, the user can
quickly understand the space occupied by the register through this value.
For example, the start address of the next register can be determined by
adding 1 to the value of this item.

Device name
The device name is defined when the "bus device" is created, indicating
which bus device is bound to the register. The register can be bound to the
CC-Link, CC-Link IE Field Basic, Modbus, and EtherCAT devices.

Function

The content in this column is some fixed function codes, indicating the robot
function corresponding to this register. Function codes are divided into
read-only and write-only function codes, as detailed in the Register Function
Code section below.

The parameters of each column in the register list are explained in the following table:

10.5.3Register type
Type Explanation

bit
Only one bit of a register is occupied, and the bit array needs to appear in integer
multiples of 16 bits. For example, for a bit type register starting from 41000-bit, a
variable with a size of 64 occupies 4 registers from 41000 to 41003.

byte
Only a certain 8 bits of a register are occupied, and LSB (the first 8 bits of the register)
or MSB (the last 8 bits of the register). When creating a byte register array, the default
is LSB, and MSB and LSB cannot be changed.

bool Occupy 1 register.
int16 Occupy 1 register.

0 10Communication

184 xCoreControl System User Manual

float Occupy 2 register.

int32 Occupy 2 register. Note: When the device type is PROFINET, creation is not
supported.

About bit type registers:

① Element Number.

②
Bit Bias. As shown in the figure above, if the element number is 1, it indicates that a
certain bit of a register is occupied. The number of bit biases can be set, with optional
values ranging from 1 to 16.

When the element number of the bit type register is greater than 1, i.e. the bit variable array, it is not
allowed to set the bit bias and perform function binding.
When the input of the element number in a bit type register is greater than 1, the bias option is
automatically hidden, and the offset is set to 1.

About byte type registers:

① Element Number.
② Byte address.
As shown in the figure above, if the element number is 1, it indicates that certain 8 bits of a register
are occupied, and the byte address can be set,
with optional values range of LSB (1-8) and MSB (9-16).
When the element number of the byte type register is greater than 1, i.e., the byte variable array, the
byte address is not allowed to be set, with a default of LSB.
Note: It is not allowed to enable the program through the register when it is equipped with the pause
function or system IO has not been reset.

0 10Communication

xCoreControl System User Manual 185

10.5.4Register function code
10.5.4.1Read-only function code

The read-only function codes are mostly used for control signals, which are usually sent by external
devices to the robot to indicate its actions. For robots, these registers are read-only. Currently
supported control signals:

Function Code Name Supported Binding
Types Function

Blank N/A No function, custom input.

ctrl_clear_alarm bit/bool/byte/int16 Clear servo alarms. Posedge (0→1): Clear alarm; set to 0:
Reset.

ctrl_estop_reset bit/bool/byte/int16 Emergency stop reset. Posedge (0→1): Estop reset; set to 0:
Reset.

ctrl_jjwc_A bit/bool/byte/int16

The trigger type is pulse trigger, which is active at a high
level. When the signal 0->1, the robot stops. After
triggering by this signal, the robot cannot continue to run,
and can only run again after pptomain, pptofunc, or
pptocurs. In addition, the sta_jjwc_B signal is set to 1 (high
level). When the signal 1-> 0, the sta_jjwc_B signal is set
to 0 (low level).

ctrl_motor_off bit/bool/byte/int16 Execution of power off. Posedge (0→1): Power off; set to
0: Reset

ctrl_motor_on bit/bool/byte/int16 Execution of power on. Posedge (0→1): Power on; set to 0:
Reset

ctrl_motor_on_off bit/bool/byte/int16 Motor power on or off: 1, power on; 0, power off.

ctrl_motoron_pptomain_start bit/bool/byte/int16

Power on, Pointer to main, and start program in order.
Posedge (0→1): Power off; set to 0: Reset.
After triggering the function code, if the teach pendant
displays the alarm "Program not synchronized to controller,
startup failed", synchronize the program and retrigger the
function code.

ctrl_motoron_start bit/bool/byte/int16

Power on and start program in order.
Posedge (0→1): Power off; set to 0: Reset.
After triggering the function code, if the teach pendant
displays the alarm "Program not synchronized to controller,
startup failed", synchronize the program and retrigger the
function code.

ctrl_pause_motoroff bit/bool/byte/int16 Pause program and execution of power off. Posedge
(0→1): Power off; set to 0: Reset.

ctrl_pptomain bit/bool/byte/int16 Program pointer to main. Posedge (0→1): Power off; set to
0: Reset.

ctrl_program_start bool/byte/int16

Start the RL program. Posedge (0→1): Power off; set to 0:
Reset.
After triggering the function code, if the teach pendant
displays the alarm "Program not synchronized to controller,
startup failed", synchronize the program and retrigger the
function code.

ctrl_program_start_stop bit/bool/byte/int16 Program running/stop. Set to 1: Program run; set to 0:
Program stop

ctrl_program_stop bit/bool/byte/int16 Stop the RL program. Posedge (0→1): Power off; set to 0:
Reset.

ctrl_set_program_speed bit/bool/byte/int16 Set program running rate. Input value represents the
running rate. Example: Input "10" sets the rate to 10

ctrl_soft_estop bit/bool/int16 Control the robot's soft emergency stop, 1: not trigger the
soft emergency stop; 0: trigger soft emergency stop.

ctrl_switch_auto_motoron bit/int16/byte/bool Switch to Automatic mode first, then power on. Posedge
(0→1): Power off; set to 0: Reset.

ctrl_switch_operation_auto bool/byte/int16 Switch to Automatic mode. Posedge (0→1): Switch to
Automatic mode; set to 0: Reset.

ctrl_switch_operation_auto_manu bit/bool/byte/int16 Switch between Automatic mode and Manual mode, set to
1: Automatic mode; set to 0: Manual mode.

ctrl_switch_operation_manu bit/bool/byte/int16 Switch to the Manual mode. Posedge (0→1): Switch to
Manual mode; set to 0: Reset.

0 10Communication

186 xCoreControl System User Manual

enable_safe_region01~enable_safe_
region10 bit/bool/byte/int16 Corresponding safe region enabled. Posedge (0→1):

Enable safe region; set to 0: Reset

ext_cmd_set bit/bool/int16 Remote control function: issue commands. See "Remote
Control".

ext_request_data int16 array Remote control function: command function code. Array,
register with a fixed size of 8.

ext_reset bit/bool/int16 Remote control function: overall function reset. See
"Remote Control".

ext_resp_get bit/bool/int16 Remote control function: Acknowledge and clear the
previous command response.

ctrl_estop_reset_and_clear_alarm bit/bool/byte/int16 Reset E-stop state and clear alarm. Posedge (0→1): Reset
E-stop state and clear alarm; set to 0: Reset.

ctrl_reduced_mode bit/bool/byte/int16 Trigger the robot's reduced mode. Posedge (0→1): Trigger
the robot's reduced mode; set to 0: Reset.

Description: All system inputs of the above system registers are pulse-triggered. To ensure that the
xCore system receives external commands correctly, please ensure that the pulse width of the external
input is not less than 60 milliseconds.

Preconditions/Precautions

Motor on
The robot is in automatic
mode;
The robot has no alarm;

Motor off

Program
startup

The robot is in automatic
mode;
There is robot program
pointer;
The robot is powered on;
The robot has no alarm;

Program
pause

The external device sends a
program pause through a
register (without power-off);

Emergency
stop
handling

Trigger the emergency stop

signal or external emergency

stop sequence logic. (Note:

After the emergency stop is

pressed, the program will

stop, the motor will be

powered off, and the pointer

will be lost, so it is required

to clear the alarm, power on,

and move the program

pointer to main.)

Whole
process for
robot
startup

Operation sequence:

(1) Switch the robot to

manual mode;

(2) Clear alarm (clear servo

alarm or controller error

alarm).

(3) Power on the motor;

(4) Move the program

0 10Communication

xCoreControl System User Manual 187

pointer to main. (The larger

the project, the longer time

the command pptomain

takes. It is recommended to

reserve 2s for execution, and

send the program startup

signal after the command is

completed.);

(5) Start the program;

10.5.4.2Write-only function code
The write-only function codes are mostly used for state signals, which refer to the signals sent by the
robot to the outside world for feeding back the robot's state, including the power-on state, program
state, etc. For robots, a register being write-only indicates that it can be bound to the state signals. The
following state signals are currently supported.

Function Code Name Supported Binding
Types Function

Blank No function, custom output.
ext_error_code int16 Remote control function: error code.
ext_resp_set bit/bool/ int16 Remote control function: response after command execution.

ext_response_data int16 array Remote control function: data to be fed back. Array, register with
a fixed size of 8.

sta_alarm bit/bool/byte/int16 Servo alarm status, 1: servo alarm; 0: no alarm.

sta_board_DI0~sta_board_DI3 bit/bool/byte/int16 Real-time output of signal state of self-developed IO board and
Solidot IO board.

sta_board_DO0~sta_board_DO
3 bit/bool/byte/int16 Real-time output of signal state of self-developed IO board and

Solidot IO board.

sta_collision bit/bool/byte/int16 Collision detection status, 1: collision detected; 0: no collision.

sta_collision_alarm bool/byte/int16 Collision detection alarm, 1: collision detected; 0: no collision;
alarm cleared.

sta_collision_open bool/byte/int16 Open state of collision detection. 1: Collision detection enabled;
0: Collision detection disabled.

sta_controller_is_running bool/byte/int16 Running signal of controller: 1: running controller; 0: controller
not running.

sta_encoder_low_battery bool/byte/int16 Low-voltage alarm state of encoder.

sta_error_code int16

The robot reports an error code, which differs from the error code
value in the robot log by 30000. For example, the error code
50002 for the robot log "out of range of motion" was obtained
through sta_errorCode as 20002.

sta_estop bit/bool/byte/int16

EStop state
This value is affected by the emergency stop trigger level type
setting. When it is set to high level, 1: the current emergency stop
is triggered; 0: normal. When it is set to low level, 0: the current
emergency stop is triggered; 1: normal.

sta_heartbeat bit/bool/byte/int16 Heartbeat signal, write-only. Click "Settings −> Controller
Settings" and set the heartbeat cycle.

sta_home bit/bool/byte/int16 Whether each joint of the robot is at the Home point, 1: at the
Home point; 0: not at Home point.

sta_jjwc_B bit/bool/byte/int16

Real-time state output. Trigger action: passive trigger. When the
ctrl_jjwc_A signal is 0->1, the sta_jjwc_B signal is set to 1.
When the ctrl_jjwc_A signal is 1->0, the sta_jjwc_B signal is set
to 0.

sta_motor bit/bool/byte/int16 Motor power on status, 1: powered on; 0: not powered on.

0 10Communication

188 xCoreControl System User Manual

sta_operation_mode bit/bool/byte/int16 Current operating mode, 1: Automatic mode; 0: Manual mode.

sta_program bit/bool/byte/int16 Whether it is currently in the program running state, 1: program
running; 0: free.

sta_program_full byte/int16

RL pause state, 0: initialization state; 1: RL running; 2: HMI
pause; 3: System IO pause; 4: Register function code pause; 5:
External communication pause; 6: SDK pause; 7: Pause
command pause; 10: Emergency stop; 11: Safety door; 12: Pause
for other factors.

sta_program_not_run bool/byte/int16 Non-execution of RL program, 1: non-execution of RL program;
0: execution of RL program.

sta_program_reset bool/byte/int16
Program reset success signal; the output is 1 when the program
pointer is on the first line of the main function, otherwise, the
output is 0.

sta_program_speed int16 Query the current program running speed (in percentage terms).

sta_robot_is_busy bit/bool/byte/int16 Whether the current robot is performing time-consuming
operations such as pptomain, 1: performing; 0: free.

sta_robot_moving bit/bool/byte/int16

Whether the robot is in motion, 1: the robot is in motion; 0: the
robot is stationary.
Only detect the robot's motion status when detecting motion
commands and Jog in the RL program. (Note: In identification,
dragging, force control, and drag playback, even if the robot is in
motion, the output is still stationary.)

sta_safe_door bit/bool/byte/int16
The register-bound state signal output is valid when the safety
gate is opened, but invalid when the safety gate is closed (active
at high level, but inactive at low level).

sta_safe_jnt_pos1~sta_safe_jnt
_pos8 bool/byte/int16 Safety position triggering state, 1: safety position reached; 0:

safety position unreached.
sta_safe_region01~sta_safe_reg
ion10 Bool/byte/int16 Safe region triggering state. 1: Safe region triggered.

sta_soft_estop bit/bool/int16

Output of soft emergency stop status. This status value is affected
by the emergency stop trigger level type setting. When it is set to
high level, the status value is 1 when triggering a soft emergency
stop, and 0 when not triggered; when it is set to low level, the
status value is 0 when triggering a soft emergency stop, and 1
when not triggered.

sta_cart_pose float array Query the current Cartesian pose of the robot. Requirements for
bound registers: float array, size - 8.

sta_cart_vel float array Cartesian speed of robot.

sta_jnt_pose float array Query the current joint angle of the robot. Requirements for
bound registers: float array, size - 8.

sta_jnt_trq float array Query the current joint torque of the robot. Requirements for
bound registers: float array, size - 8, unit: N.m.

sta_jnt_vel float array Query the current joint velocity of the robot. Requirements for
bound registers: float array, size - 8, unit: rad/s.

sta_tcp_pose float array Pose of the robot TCP. Requirements for bound registers: float
array, size - 7.

sta_tcp_vel float array Velocity of the robot TCP. Requirements for bound registers:
float array, size - 7.

sta_tcp_vel_mag float Robot TCP resultant linear velocity.

sta_ext_estop Bool/byte/int16

External estop state
1: external emergency stop state; 0: non-external emergency stop
state
The safeboard is a mini board, and the firmware version is not
less than 1.0.8.7

sta_hand_estop bool/byte/int16

Handheld estop state
1: external emergency stop state; 0: non-external emergency stop
state
The safeboard is a mini board, and the firmware version is not
less than 1.0.8.7

sta_sys_stop_di bit/bool/byte/int16

Output the value of the signal bound to the system pause.
"sta_sys_stop_di" outputs 1 when either the "Pause Program" or
"Pause Program 1" signal is triggered, and outputs 0 when neither
of the two signals is triggered.

sta_reduced_mode bit/bool/byte/int16 Whether the robot is currently operating in reduced mode. 1: In

0 10Communication

xCoreControl System User Manual 189

reduced mode.

sta_on_path bit/bool/byte/int16

Whether the robot's current position is on the preset trajectory
1: Yes, e.g., during program execution or when paused, the robot
remains on the preset path.
0: No, e.g., path deviation during JOG, clicking pptomain,
reloading the project, or after pptocurs repositioning.
Notes:
1. When the emergency stop button is pressed, due to servo
oscillation and power-off jitter, the controller determines that the
robot has deviated from the preset trajectory, and therefore the
sta_on_path function code value is 0.
2. When the safety gate is opened and a safety stop is triggered,
the sta_on_path function code value becomes 0.

sta_near_path bit/bool/byte/int16

Whether the robot's current position is near the preset trajectory
1: Yes, if both the path deviation sphere radius and path deviation
sphere angle conditions are satisfied.
0: No, for all other cases.
The path deviation sphere radius and path deviation sphere angle
parameters are configured in Settings → Controller settings →
Advanced settings.
When both the path deviation sphere radius and path deviation
sphere angle are set to 0, this function code is equivalent to
sta_on_path

10.5.5RL read/write register example
The control system reads and modifies the registers in two ways: command or assignment.
Command provides WriteRegByName and ReadRegByName. Assignment is more intuitive and
simple, using the operator "=".

10.5.5.1Command
WriteRegByName(modbus_reg[index], rl_symbol)
Modbus-reg is the register name configured in "Communication" -> "Register", which can be offset
at the first address of the corresponding register using [index]. The index range is [1, maximum
register size], and the default index = 1.

The data in the control system can be output to its bound devices through registers.
For example, "int rl_value" is defined in the control system. If you want to output it to an external
device, you can specify a register, such as the first register of "mtcp_wo_i", and add a
WriteRegByName command in the RL language. The value will be sent to the external device
associated with "mtcp _ wo _ i".

ReadRegByName(modbus_reg[index], rl_symbol)
This command is similar to WriteRegByName, which updates the value of a register to the RL
program variable. For example, it is used to control the execution process and motion parameters of
RL programs.

10.5.5.2Assignment
Directly use the operator "=". For example, "mtcp_wo_i[1] = 1" is to update the value of the first
element of the register mtcp_wo_i to 1. Similarly, "a = mtcp_wo_i[1]" is to update the value of the
first element of the register mtcp_wo_i to the variable a of the RL program.

10.5.6Register remote control
Remote control is a combination function performed with registers of 7 different functions. It is used
to achieve complex business logic interactions in a specific sequence. External devices can fulfill

0 10Communication

190 xCoreControl System User Manual

functions such as robot Jog, updating point position, obtaining robot position and status, etc. via the
remote control function.

Register function
External devices use four types of registers to control the robot. These registers are read-only for the
robot.

Function Code
Name Attribute Type Length Function

ext_cmd_set Read-only int16/bool/bit 1

Issuing commands:
1. Set ext_cmd_set to 1 to send a request for command
execution. The request is responded only when
ext_cmd_set is set to 1.
2. To avoid misoperation, be sure to set the command data
to the data area before execution. (The command data is
temporarily stored in the cache and is responded only when
ext_cmd_set is 1).
3. After the command is executed, clear ext_cmd_set (set it
to 0).

ext_reset Read-only int16/bool/bit 1

Function reset:
1. The signal is used to enable the remote control function.
Always keep the register state at 1 when using the function.
2. The function stops when the register state is 0.
3. The signal is also used for commands to reset or interrupt
the action when the interface function is abnormal.

ext_resp_get Read-only int16/bool/bit 1 Acknowledge and clear the previous command response,
and reset ext_resp_set to 0.

ext_request_data Read-only int16 8
Command function code. Array, register with a fixed size
of 8. For details, refer to the introduction in the function
code section.

External devices use three types of registers to obtain the robot status. These registers are write-only
for the robot.

Function Code
Name Attribute Type Length Function

ext_error_code Write-only int16 1 Remote control function: error code.

ext_resp_set Write-only int16/bool/bit 1 After responding to the control command, the robot sets the
register to 1, indicating that the command is executed.

ext_response_data Write-only int16 8 Remote control function: data to be fed back. Array,
register with a fixed size of 8.

10.5.6.1Procedure
The combined use of 7 types of registers and control flow are shown in the figure below.

0 10Communication

xCoreControl System User Manual 191

10.5.6.2Command format
Commands and responses are implemented with 8 registers individually.

The command signal ext_request_data (eight registers occupied: reg0 - reg7) is used to specify the
data area of the commands and relevant parameters. A command consists of multiple characters:
1) Character: a 16-bit register.
2) Command format: a command consists of up to 8 characters and varies with the command. The
shortest command consists of 1 character.

Command No. Command No. 1 Command No. 2 …… Command No. 7
The response signal ext_response_data (eight registers occupied: reg0 - reg7) is used to obtain the
data area of the responses. A response consists of multiple characters:
1) Character: a 16-bit register.

2) Response format: a response consists of up to 8 characters. and varies with the received command.
The shortest response consists of 1 character. However, an abnormal response always occupies 3
characters.

Command No. Response No. 1 Response No. 2 …… Response No. 7

0 10Communication

192 xCoreControl System User Manual

The available command numbers are shown in the table below:
Command Type Explanation Command

Code
Command Length
Command Response

JOG

Set Jog space 1 2 3
Obtain Jog space 2 1 4
Set Jog speed 3 2 3
Obtain Jog speed 4 1 4
Set Jog step length 5 2 3
Obtain Jog step length 6 1 4
Start Jog 7 4 2
Stop Jog (without
parameters) 8 1 2

Update point position 9 2 2
Move to point position 10 2 2

Set information

Set tools 11 2 3
Obtain current tool id 12 1 4
Set work object 13 2 3
Obtain current work object
id 14 1 4

10.5.6.3Command description
(1) Set Jog space:

Command/Reply Command
Code

Parameter 1 Parameter 2

Set Jog space 1

Frame:
1: Joint space
2: World frame
3: Flange frame
4: Base frame
5: Tool frame
6: Work object frame

N/A

Reply 1 Result: 0 - Succeed; 1 - Fail. Error code

(2) Obtain Jog space:
Command Command

Code
Parameter 1 Parameter 2 Parameter 3

Obtain Jog space 2 N/A N/A N/A
Reply 2 Result:

0 - Succeed; 1 - Fail
Error code Frame:

1: Joint space
2: World frame
3: Flange frame
4: Base frame
5: Tool frame
6: Work object frame

(3) Set Jog speed:
Command/Reply Command

Code Parameter 1 Parameter 2

Set Jog speed 3 Jog speed (1−100) N/A
Reply 3 Result: 0 - Succeed; 1 - Fail Error code

(4) Obtain Jog speed:
Command Command

Code Parameter 1 Parameter 2 Parameter 3

Obtain Jog
speed 4 N/A N/A N/A

Reply 4
Result:
0 - Succeed; 1 -
Fail

Error code Jog speed (1−100)

(5) Set Jog step length:
Command/Reply Command

Code Parameter 1 Parameter 2

Set Jog step
length 5

1: Continuous
2: 10 mm step length
3: 1 mm step length
4: 0.1 mm step length
5: 0.01 mm step length

N/A

Reply 5 Result: 0 - Succeed; 1 - Fail Error code

0 10Communication

xCoreControl System User Manual 193

(6) Obtain Jog step length:
Command Command

Code Parameter 1 Parameter 2 Parameter 3

Obtain Jog step
length 6 N/A N/A N/A

Reply 6 Result:
0 - Succeed; 1 - Fail Error code

1: Continuous
2: 10 mm step length
3: 1 mm step length
4: 0.1 mm step length
5: 0.01 mm step length

(7) Start Jog:
The command is dependent on command code 1: set Jog space. In joint space, the value of parameter
1 represents the joint number (J1−J7: 1 for J1, ..., 7 for J7); in Cartesian space, it represents the (x, y,
z, a, b, c, and elb) number (1 for x, ..., 7 for elb).

Command/Reply Command
Code Parameter 1 Parameter 2

Start Jog 7

Operation mode:
Joint space − representing joint
number;
Cartesian space − representing (x, y,
z, a, b, c, and elb)

Jog direction:
1: negative
2: positive

Reply 7 Result: 0 - Succeed; 1 - Fail Error code

(8) Stop Jog:
Command/Reply Command

Code
Parameter 1

Stop Jog 8 N/A

Reply 8 Result: 0 - Succeed; 1 - Fail.

(9) Update point position:

(10) Move to point position:
Command/Reply Command

Code Parameter 1 Parameter 2

Move to point
position 10 Motion mode:

1: MoveAbsj; 2: MoveJ; 3: MoveL
Number in the RL project
point list

Reply 10 Result: 0 - Succeed; 1 - Fail Error code

(11) Set current tool:
Command/Reply Command

Code Parameter 1 Parameter 2

Set current tools 11 Number in the RL project tool list N/A
Reply 11 Result: 0 - Succeed; 1 - Fail Error code

(12) Obtain current tool id:
Command/Reply Command

Code Parameter 1 Parameter 2 Parameter 3

Obtain current
tool id 12 N/A N/A N/A

Reply 12 Result: 0 - Succeed; 1 -
Fail Error code Current tool id

(13) Set current work object:
Command/Reply Command

Code Parameter 1 Parameter 2

Set current work
object 13 Number in the RL project work

object list N/A

Reply 13 Result: 0 - Succeed; 1 - Fail Error code

(14) Obtain current work object id:

Command/Reply Command
Code Parameter 1 Parameter 2

Update point
position 9 Number in the RL project point list N/A

Reply 9 Result: 0 - Succeed; 1 - Fail Error code

0 10Communication

194 xCoreControl System User Manual

Command/Reply Command
Code Parameter 1 Parameter 2 Parameter 3

Obtain current
work object id 14 N/A N/A N/A

Reply 14 Result: 0 - Succeed; 1 - Fail Error code Current work
object id

10.5.6.4Error code
During command configuration, parameter errors, robot status mismatch, or other conditions may
lead to configuration failure. Error codes can be used to check the robot's problems in this case.

The control system has three types of error codes:
ext_response_data: error code of command execution results.
ext_error_code: The command cannot be executed, for example, the robot is busy, or the remote
control flag bit is incorrect, etc.
sta_error_code: the robot error code. Read the register when an error occurs during Jog.

Normally, the error code should be used according to the following steps:
After sending the execution command (ext_cmd_set=1), first read ext_error_code. If there is no error
code, read the return value of ext_response_data. If the return value is not zero, read the error code of
ext_response_data.
For motion operations (Jog and move to point position), if the above return values are both 0, read
sta_error_code to see if there is a stop in the motion caused by an error (such as singularity and
overrun).

ext_error_code description:
Error code Meaning Remarks
01 Unsupported command
02 Invalid parameter
03 Incorrect control flag bit Check whether ext_resp_set is 0 or 1.
04 Robot busy The robot is executing a command and is forbidden to

respond to others.

05 No corresponding number
found

Tool, point position, and work object id

06 Unmatched point type and
motion type

The point type does not match the motion type for the
"Move to point position" command. For example, only the
MoveAbsJ command can be used for joint space
points, and only theMoveJ or MoveL command can be
used for Cartesian space points.

07 Unmatched number of axes
entered and model

11 Incorrect Manual/Auto Mode

12
Incorrect robot status. Please
check if the robot is in Jog
Mode.

The robot can only be jogged in Jog Mode and can not
be jogged in non-Jog Mode such as Drag Mode.

13 Incorrect power-on status The robot can only be jogged when powered on.

14 The robot is in non-position
mode and can not be jogged

Similar to error code 12.

15 Report algorithm error when
unable to start Jog

The error is reported when the robot cannot be jogged for
various reasons.

20 Encounter singularity

21 Moved to target point If the robot moves to a point it has reached earlier, an
error occurs.

10.5.7Register import and export
The register import and export function can quickly copy register configurations from one robot to
another robot without reconfiguring registers.

10.5.7.1Register export

On the register page, click the button in the bottom left corner to enter the register export
interface

0 10Communication

xCoreControl System User Manual 195

① Register export target file (including path).
② Register export selection list.
③ Register export operation button.

Export steps: First, enter or select the register export target file path in ①, then check the register to
be exported in the register list in ②, and finally click the "Next" button in ③ to execute the export.
The exported register file can be generated under the corresponding path in ①.

10.5.7.2Register import

On the register page, click the button in the bottom left corner to enter the register import
interface

① Register import file.
② Register import options, which are strategies for handling conflicting items.
③ Register import selection entry.
④ Register import operation button.

Import steps: First, select the register file to be imported in ① , then set the conflicting register
strategy in ② , then select the register to be imported in ③ , and finally click the "Next" in ④ to
perform the import to import the selected register to the local machine.

10.5.7.3Conflict checking during register import
The same device and register properties (read and write) cannot have the same register address. If the
same, if the import option is set to not import, the original register will prevail, and conflicting
registers will not be imported; if the import option is set to auto replace, the newly imported register
will prevail, and the conflicting register will be overwritten. A pop-up window will prompt the user to
choose whether to replace the current register.

0 10Communication

196 xCoreControl System User Manual

When creating the 7 registers starting with ext: ext_cmd_set, ext_resp_set, ext_resp_get, ext_reset,
ext_response_data, ext_request_data, and ext_error_code, if the register has been bound by the
register address, these addresses cannot be bound by another register. When importing the above 7
registers, if the function codes have already been bound in the HMI, and the newly imported register
list also involves such function codes, the newly imported ones will prevail, and the original
conflicting register will be overwritten. A pop-up window will prompt the user to choose whether to
replace the current register.

10.6IO device
10.6.1Overview

IO devices support four signal types: DI, DO, AI, and AO. Signal sources include: controller cabinet
built-in, EtherCAT expansion, and field bus expansion. For industrial robots, the controller cabinet
has several built-in DIs and DOs. For cobots, the base and the end-effector have several built-in DIs
and DOs. For industrial robots, the EtherCAT expansion interfaces are reserved on the controller
cabinet to connect EtherCAT expansion modules to generate new DI, DO, AI, and AO. The Modbus
bus expansion can also be configured with IOs.

10.6.2Parameter configuration
You can view all current IO devices on the "Communication" -> "IO Device" page, and perform
operations on them such as Add, Edit, and Delete.

① List of IO device.
② IO device extension attributes.
③ The IO device operation buttons, from left to right, are Create, Edit, and Delete.

Click the Create button in ③ on the IO device configuration page in the above figure to enter the IO
device (including ETHERCAT, FIELDBUS, and ROKAE _IO devices) configuration interface. The
parameters on the interface may vary with the device type.

ETHERCAT-Slave IO type device parameter interface

0 10Communication

xCoreControl System User Manual 197

ETHERCAT-SafeBoard Extend IO-DIDO type device parameter interface

ETHERCAT-SafeBoard Extend IO-AIAO type device parameter interface

ETHERCAT-ServoBoard Extend IO-DIO type device parameter interface

0 10Communication

198 xCoreControl System User Manual

FIELDBUS type device parameter interface

I/O device configuration parameters interface

Parameter Explanation

Device type
EtherCAT and FIELDBUS are optional. EtherCAT refers to IO expansion
with the EtherCAT bus and expansion modules. The expansion modules can
only serve as slaves, and the slave address needs to be configured.

EtherCAT slave information -
Device type

SafeBoard IO, SafeBoard Extend IO, xPanel IO, Slave IO, and ServoBoard
Extend IO are optional. SafeBoard IO refers to the DI and DO on the robot
safeboard. SafeBoard Extend IO refers to the expansion IO on the robot
safeboard, generally the expansion IO on the safeboard in the XBC_5
controller cabinet. xPanel IO refers to the DI and DO of the end-effectors of
the cobots. Slave IO refers to the EtherCAT expansion module. ServoBoard
Extend IO refers to the extended IO of the robot servo in the XBC_6 control
cabinet.

EtherCAT slave information -
IO board type

When SafeBoard Extend IO is selected in EtherCAT slave information -
Device type, the option IO board type appears for selection of the safeboard
expansion IO board. DIO16_1, DIO16_4, DIO16_5, DIO16_6, AIAO4_2, and
AIAO4_3 are optional. The last digit of the option refers to the address of the
safeboard expansion IO board. Select the safeboard expansion IO board that is
actually connected. In addition to manual editing by the user, the controller
can automatically identify and add the safeboard expansion IO board.
When ServoBoard Extend IO is selected in EtherCAT slave information -
Device type, the servo IO board position option will appear. Slots 1-6
correspond to the actual expansion slot positions on the control cabinet.
Currently, only DIO is supported for the IO board type. In addition to manual
editing by the user, the controller can automatically identify and add servo
extended IO during startup.

EtherCAT slave information -
Slave address

The slave address of the expansion module in the EtherCAT bus topology. It
should not conflict with the address of the safeboards, joints, or the cobot
end-effectors.

FIELDBUS - Bus device name The custom name when a bus connection is created on the Bus Device page. It
is used to associate with the Bus Device.

ROKAE_IO device type DIDO and AIAO are optional, corresponding to the digital and analog IO

0 10Communication

xCoreControl System User Manual 199

ROKAE_IO type device parameter interface

Monitor the created DI, DO, AI, and AO in Status Monitoring -> IO Signal. The IO signals can be
filtered by Virtual IO Board Name. Only the IO signals currently configured on the virtual IO board
will be displayed. You can also filter the signals by signal type. Only a certain type of DI, DO, AI,
and AO signals will be displayed.

After the virtual IO board is configured, a default name will be generated for the IO signal. There are
two ways to use RL: one is to use the default name; the second is to alias and use a new name in RL.
Use the default
name

The board IO_Device_3 generates the DI3_X IO signals by default. As shown in the
figure, DI3_0 is processed directly in the RL program.

boards developed by ROKAE. Please note that it shall be set according to the
actual IO board.

ROKAE_IO slave address
It refers to the address of self-developed IO board accessed and ranges from 1
to 15 without repetition. Please note that it shall be set according to the dialing
address of the actual IO board, otherwise, there may be an abnormal state.

IO board serial number
A virtual IO board is generated for each IO device configuration for the
control system to classify and manage the IO boards internally. The IO board
serial number is the unique number for virtual IO board management.

Name The custom name of the virtual IO board. It is used for filtering in Status
Monitoring -> IO Signal.

Number of digital inputs Number of DIs.
Number of digital outputs Number of DOs.

Digital IO Configuration

When ServoBoard Extend IO is selected in EtherCAT slave information -
Device type and the IO board type is set to DIO, the digital IO configuration
option will appear. The output type of DIO0-7 and DIO8-15 can be
configured as either NPN or PNP. Note: This configuration requires a
controller restart to take effect.

Number of analog inputs Number of AIs.
Number of analog outputs Number of AOs.

Analog IO Configuration

When SafeBoard Extend IO is selected in EtherCAT slave information -
Device type and AIAO4_2 or AIAO4_3 is selected in IO board type, the
option Analog IO Configuration appears. Each analog channel can be
configured as voltage type or current type.

0 10Communication

200 xCoreControl System User Manual

Alias

Alias IO signals in Programming -> IO Signal List:

The statements ① and ② in the above figure have the same effect.

10.6.3Modbus expansion IO example
When real IO signals are required to interact with external devices, it is recommended to use an
adapter module, which is connected to the control cabinet. You can contact ROKAE to obtain
recommended Modbus IO modules. The module is a Modbus TCP slave and controls the robot
through the coil function. The robot needs to be configured as a Modbus Master with the coil function
enabled.

According to the configuration method of the field bus and expansion IOs, configure Bus Device first
and then configure IO Device when using Modbus expansion module to expand real IOs.

Step Graphical Representation Explanation

1. Configure Bus
Device.

In master-slave mode, select "Master" to
use the robot as a master.
Slave ID represents the slave ID of the
Modbus IO module.
When the robot serves as the master, the IP
is filled in with the IP of the Modbus IO
module, and the port number is filled in
with the port number of the Modbus IO
module.
Next: After the parameters are configured,
click "Next" to complete the configuration.

0 10Communication

xCoreControl System User Manual 201

2. Configure IO
Device Configuration.

Select Device Type as "FIELDBUS".
Bus device name: Select the device name
defined in the Bus Device configuration.
Basic information: Digital I/O and analog
I/O configured in Bus Device configuration
will be obtained automatically. No
configuration is required.

3. Enabling function
and status monitoring.

After the Bus Device and IO Device
Configuration are just configured, the
configured expansion IOs will not be
displayed in the status monitoring because
the bus connection is not enabled yet. To
use these IOs, enable the bus connection to
correctly establish connection and
communication between the controller
cabinet and the expansion IO modules.

As shown in the left figure, after the bus
device is enabled, the connection between
the controller and the expansion modules is
established and works properly. Now the
IO of the bus device modbus_0 is displayed
in the status monitoring of the IO signals,
and the number of DIs and the total number
of DIs and DOs remains the same as the
bus device configuration.

10.7End-effector
The xCore control system enables the manipulation of DH grippers via end-effector, with the
end-effector interface supporting IO communication and RS485 communication. This functionality is
exclusively applicable to the collaborative robot xMate ER series.
On the HMI main interface, access to the End-effector settings interface can be obtained through the
menu "Communication" -> "End-effector" menu option, as illustrated in Figure:

Configuration of end-effector IO ports

0 10Communication

202 xCoreControl System User Manual

Configuration of end-effector RS485 ports
The relevant parameter settings are explained as follows:
Parameter
setting

Value/Description

Manufacturer Choose DH grippers.
Interface Communication protocol, optional controllable via IO or RS485.
Path It includes two sets of travel attributes trip1 and trip2, which contain the

opening/closing position and force.
Maximum
position

Maximum opening position, unit: percentage. Only RS485 is supported.

Minimum
position

Minimum opening position, unit: percentage. Only RS485 is supported.

Supporting
force

The force used when the gripper is opened, unit: percentage. Only RS485 is
supported.

Gripping
force

The force used when the gripper is closed, unit: percentage. Only RS485 is
supported.

After setting the parameters, you can use the "Open" and "Close" buttons to turn the gripper on or off.
Note: RS485 supports setting of the gripper trip parameter. For IO control, the trip parameters can
only be set through the DH communication adapter.

10.8RCI settings
RCI is an external control interface, and the RCI communication setting is required before use. Only
collaborative models support this feature.
On the HMI main interface, you can enter the RCI settings interface through the menu
"Communication" -> "RCI settings", as shown in the following figure:

The parameters that need to be set are shown in the table below:
Parameters Explanation

IP

If the user PC is directly connected to the robot via network cable, the IP address
of the user PC should be in the same network segment as the IP of the robot; if
the user PC is connected to the robot via wireless or router, the user PC should be
in the same LAN as the robot.

Port The port number is set to 1337 by default.

Packet loss
threshold

The packet loss threshold is in percentage, which represents the packet loss rate
during RCI communication. For example, when the packet loss threshold is set to
10, it means that the packet loss rate during RCI usage should not exceed 10%.
The packet loss threshold is recommended to be set between 10−20.

Refer to the RCI User Manual for detailed RCI usage and routines.

0 10Communication

xCoreControl System User Manual 203

10.9xPanel settings
xPanel settings are available to set the mode of the robot's end-effector, which is only applicable to
the xMate CR and SR collaborative robots.
On the HMI main interface, you can enter the xPanel settings interface through the menu
"Communication" -> "xPanel settings", as shown in the following figure:

The parameters that can be set are shown in the table below:
Parameters Explanation
External power supply mode Set the external power supply mode at the end
Analog input or RS485 mode
selection

Choose to use analog input or RS485 serial port at the end

Digital output DO0 mode Set the corresponding terminal DO output to NPN or PNP mode
Digital output DO1 mode Set the corresponding terminal DO output to NPN or PNP mode
Analog input AI0 mode Set the corresponding analog input to voltage or current type
Analog input AI1 mode Set the corresponding analog input to voltage or current type

After setting the required parameters, click the "OK" button, and the settings will take effect.
Note: The voltage or current type of the external analog input signal should be consistent with the
corresponding analog input mode, otherwise, unexpected errors may be caused.

10.10Electric gripper and suction cup
10.10.1Overview

xMate CR, ER, and SR robots support end RS485 communication and are currently compatible with
multiple electric grippers and suction cups. This interface is mainly used for configuring and testing
adapted electric grippers and suction cups.
Note:
 The function is only applicable to xMate ER, CR, and SR robots;
 The old version of the robot's end board may not be compatible with this function. Please

contact the ROKAE to upgrade the board firmware;
 Before using the xMate CR model, please confirm that the end parameters of the xPanel are

configured correctly;

10.10.2Configurations
On the HMI main interface, you can enter the Electric gripper and suction cup interface through the
menu "Communication" -> "Electric gripper and suction cup", as shown in the following figure:

The parameter description for setting "Basic Information" is as follows:
Parameter Explanation

Manufacturer Jodell, Robustmotion, Robotiq, and DH;

0 10Communication

204 xCoreControl System User Manual

Series

Jodell, supports EPG series electric grippers and EVS series suction cups;
Robustmotion, supports RM-RMG and RM-C series electric grippers;
Robotiq, supports the 2F85 series;
DH, supports the PGI series;

Communication Only RS485 interface is supported;

10.10.2.1Jodell electric grippers
The "Basic Information" section allows the Manufacturer to select Jodell as the preferred option,
while the Series option enables them to choose EPG. Consequently, the HMI will seamlessly
transition to the testing interface of the EPG series electric gripper, as shown in the following figure:

Initialization: To test an electric gripper, enter the ID of the gripper and click the "Initialize" button. If
the gripper successfully detects and initializes, it indicates that the hardware connection and
communication are functioning properly, allowing users to proceed or utilize it for further operations.
Tool testing: After initialization, click the "Move to" button to control the electric gripper's movement
to a specified position with designated velocity and force. If the gripper reaches the desired position
or encounters objects with predetermined force, it will halt its motion accordingly while displaying its
contact detection status on the testing interface.
The relevant parameter settings are explained as follows:
Parameter Value/Description
Tool ID Enter the ID of the electric gripper. This ID is the electric gripper ID set in the

Jodell Robotics debugging software
Tool
position

Set the position of the electric gripper, with a range from 0 to 255

Tool
velocity

Set the velocity of the electric gripper, with a range from 0 to 255

Tool torque Set the torque of the electric gripper, with a range from 0 to 255

10.10.2.2Jodell suction cup
The "Basic Information" section includes the selection of Jodell as the Manufacturer and EVS as the
Series. Consequently, the HMI will automatically switch to the testing interface specifically designed
for suction cups belonging to the EVS series, as shown in the following figure:

Initialization: To test a suction cup, first input the ID of the suction cup and click on the "Initialize"
button. If the software prompts successful initialization, it indicates that the hardware connection and
communication of the suction cup are functioning properly, allowing users to proceed to the next step
or utilize it further.
Tool testing: After initialization, adjust the suction cup parameters as required. Once all parameters
have been entered, click on the "Setup" button to conduct a test on the suction cup.
The parameter settings are explained as follows:
Parameter Value/Description
Channel
selection

The suction cup supports two channels. The user can choose the effectiveness
of the two channels at will

0 10Communication

xCoreControl System User Manual 205

Minimum
vacuum

Set the target vacuum level of the suction cup. The suction cup stops working
when the inside vacuum level reaches this value

Maximum
Vacuum

Set the target vacuum level of the suction cup. The suction cup starts working
when the inside vacuum level is greater than this value

Timeout
period

Times out when the minimum vacuum level specified is not reached in the
specified time

10.10.2.3Robustmotion electric gripper
The Manufacturer selects Robustmotion in the "Basic Information" section, and chooses either
RM-RGM or RM-C for the Series. As a result, the HMI will automatically switch to the test interface
of the Robustmotion series electric gripper, as shown in the following figure:

Initialization: To test an electric gripper, it is necessary to input the ID of the device and click on the
"Initialization" button. If the electric gripper is properly configured and communication is established,
initialization will be successful, enabling further testing and usage.
Current tool ID: This displays a list of initialized device IDs. By selecting a device with its
corresponding ID, users can view its status and conduct tests.
Tool state: After successful initialization, the Robustmotion electric gripper can display various tool
states including position (mm), speed (mm/s), torque (%), in-place state (1: in place), and error
alarms (error code information).
Tool test: The running condition of Robustmotion electric grippers can be tested in position mode or
torque mode. According to the manufacturer's instructions, position mode should be used for testing
grip release while torque mode should be used for grip closure.
Position mode: Parameters that can be set include absolute positioning position (mm), speed (mm/s),
positioning range (considering in-place error range, mm), and acceleration (mm/s^2), as shown
above.
Torque mode: The parameters that can be set include distance (relative distance, mm), speed (mm/s),
force (%), acceleration (mm/s2), positioning range (in-place error range considered, mm), and time
range; as shown below:

The electric gripper can move according to the set mode and parameters if clicking on the "Move to"
button.

10.10.2.4Robotiq 2F_85 electric gripper
In the "Basic Information", set the Manufacturer to Robotiq and the Series to 2F_85, and the HMI
will switch to the testing interface of the Robotiq 2F_85 electric gripper, as shown in the following
figure:

0 10Communication

206 xCoreControl System User Manual

Initialization: To test an electric gripper, enter the ID of the gripper and click the "Initialize" button. If
the gripper successfully detects and initializes, it indicates that the hardware connection and
communication are functioning properly, allowing users to proceed or utilize it for further operations.
Tool testing: After initialization, click the "Move to" button to control the electric gripper's movement
to a specified position with designated velocity and force. If the gripper reaches the desired position
or encounters objects with predetermined force, it will halt its motion accordingly while displaying its
contact detection status on the testing interface.
The relevant parameter settings are explained as follows:
Parameter Value/Description
Tool ID Enter the ID of the electric gripper
Tool
position

Set the position of the electric gripper, with a range from 3 to 255

Tool
velocity

Set the velocity of the electric gripper, with a range from 0 to 255

Tool torque Set the torque of the electric gripper, with a range from 0 to 255

10.10.2.5DH electric gripper
The "Basic Information" section allows the Manufacturer to select DH as the preferred option, while
the Series option enables them to choose PGI. Consequently, the HMI will seamlessly transition to
the testing interface of the PGI series electric gripper, as shown in the following figure:

Initialization: To test an electric gripper, enter the ID of the gripper and click the "Initialize" button. If
the gripper successfully detects and initializes accompanied by executing one opening and closing
action, it indicates that the hardware connection and communication are functioning properly,
allowing users to proceed or utilize it for further operations. Note: In the initialization process, the
opening and closing of the electric gripper determines its operating range, and the electric gripper will
move within the operating range.
Tool testing: After initialization, click the "Move to" button to control the electric gripper's movement
to a specified position with designated velocity and force. If the gripper reaches the desired position
or encounters objects with predetermined force, it will halt its motion accordingly while displaying its
contact detection status on the testing interface.
Note: If the electric gripper grasps an object during movement, it will not continue to move even if
the object is removed, and will only move again after a new target position is re-set.
The electric gripper has five statuses, namely 0 (the electric gripper is moving), 1 (the electric gripper
does not grasp the object), 2 (the electric gripper grasps the object), 3 (the object falls), and 4 (no
content is displayed, that is, the current ID is not initialized successfully).

0 10Communication

xCoreControl System User Manual 207

The relevant parameter settings are explained as follows:
Parameter Value/Description
Tool ID Enter the ID of the electric gripper. This ID is the one set in the DH

debugging software
Tool
position

Set the position of the electric gripper, with a range from 0 to 1000 in %
(determined in the initialization process)

Tool
velocity

Set the speed of the electric gripper, with a range from 0 to 100 in %

Tool torque Set the torque of the electric gripper, with a range from 20 to 100 in %

10.11Serial port settings
Users can utilize serial ports for communication with external devices. The utilization of serial ports
necessitates hardware equipment support. The XBC5 control cabinet of industrial robots features a
dedicated RS-232 serial port on the cabinet body. Alternatively, users can leverage the reserved USB
interface in the control cabinet and employ the USB to RS-232 interface module for serial port
communication. However, this functionality is not supported by collaborative robots due to the
absence of relevant hardware interfaces.
On the HMI main interface, users can access the serial port settings interface via the
"Communication" -> "Serial port settings" menu, as shown in the following figure:

① Serial port display filtering.
② List of serial port device.
③ Serial port edit buttons, from left to right, are Create, Edit, and Delete.

Click the "Create" button to enter the New Serial Port page, as shown in the following figure:

Before using the serial port, the parameters that need to be configured are as follows:

Parameter Explanation

Name

The custom name to be used as the unique identifier in RL to use the serial port resources.
Note: The serial port name is subject to the name conflict restriction in the project. It should
not be identical with the existing network identifiers in the project or the existing identifiers of
other serial ports.

Port System port. The control system lists all the serial port resources detected (including the
USB-to-USB ports) for users' selection and use.

Baud rate 1200/2400/4800/9600/19200/38400/57600/115200 are optional.
Data bit 5/6/7/8 bits are optional.

0 10Communication

208 xCoreControl System User Manual

Stop bit 1/1.5/2 bits are optional.
Parity bit Odd parity/Even parity/Mark parity/Space parity/None parity are optional.

After configuring the parameters, click the "Next" button to complete the serial port configuration. At
this time, use the serial port in the RL program. The serial port function includes a series of
commands, please refer to the detailed description of serial port command in the RL command.
Note: Please try to ensure that the parameter settings on both ends of the serial port communication
are consistent, otherwise, it may cause abnormal data transmission and reception.

10.12Encoder
This function is part of the conveyor belt tracking function. For detailed usage, please refer to the
Conveyor Belt Tracking Function User Manual.

10.13OPC-UA
10.13.1Overview

The OPC-UA of the xCore control system currently supports the xCore controller as the server of
OPC-UA communication, and supports all mandatory nodes and some optional nodes in the OPC
40010-1 OPC UA for Robotics, Part 1: Vertical Integration standard by default. For a detailed model
introduction, please refer to the relevant parts of Appendix OPC-UA. In addition, it also supports
user-defined variables and event upload functions.

10.13.2Open and close
On the HMI main interface, enter the OPC-UA configuration interface through the menu
"Communication" -> "OPC-UA", as shown in the figure below. You can enter the port of the
OPC-UA service in the "Port" edit box above, and turn on or off the OPC-UA service through the
"Enable" button.

After the OPC-UA service is opened normally, you can see that the OPC-UA service is in a listening
state in the network connection of the status monitoring, as shown in the following figure.

10.13.3Safety
Click the "Safety" tab on the OPC-UA configuration interface to enter the safety configuration
interface, as shown in the figure below:

0 10Communication

xCoreControl System User Manual 209

This interface is mainly used to explain and configure OPC-UA server safety policies.
1. None, Sign, and Sign & Encrypt are supported by default. Select the required mode when the client
connects.
2. Four safety policies are supported by default: Basic 128Rsa15, Basic 256, Basic 256Sha256, and
Aes128Sha256RsaOaep. Just select the required policy when the client connects.
3. Tick the "Allow Anonymous" check box to allow the client to log in anonymously. If it is not
checked, the client can only log in with the user in the list on the right.
4. Enter the user name and password, click the "New User" button, and you can add a new user to the
list on the right.
5. Select the user in the list on the right, and click the "Delete User" button to delete unwanted users.

10.13.4Certificate
Click the "Certificate" tab on the OPC-UA configuration interface to enter the certificate
configuration interface, as shown in the figure below:

1. By default, if the OPC-UA server does not import the certificate and private key, the control system
will use the self-generated certificate and private key.
2. Click the "Import Certificate" button to import the server certificate, and click the "Import Private
Key" button to import the server private key. Both the imported certificate and private key need to be
in der format, and ensure that the certificate and private key match. Additionally, it should be noted
that the URL of the imported server certificate must be: urn:xcore.opcua.server.
3. Click the "Import" button on the right to import trusted client certificates, and click the "Delete"
button to delete the selected client certificates.

10.13.5Custom variable configuration
Click the "Variable" tab on the OPC-UA configuration interface to enter the custom variable
configuration interface, as shown in the figure below:

The OPC-UA communication of the xCore control system supports custom variable function,
supports four types of variables: bool, int, double, and string, and supports configuring whether the

0 10Communication

210 xCoreControl System User Manual

client writeable properties. The specific configuration functions are as follows:
1. Fill in the attributes such as "Name", "Description", "Type", "Writable", and "Initial Value" on the
left side of the page, and click the "Create" button to add a custom variable to the list on the right. A
maximum of 128 custom variables are supported.
2. Click the "Delete" button to delete the selected variable in the list on the right. Click the "Clear"
button to remove all variables from the list on the right.
3. Check the "Enable Monitoring" check box under the variable list on the right to turn on variable
monitoring, and "Current Value" will display the value of the variable in the controller in real time.
Click the "Modify Value" button to modify the current value of the selected variable.
The client can find the node of the custom variable under the CustomVariables node in the Robotics
model, and perform read and write operations. On the robot side, the user can use the
ReadOpcUaVarByName and WriteOpcUaVarByName commands to read or modify OPC-UA custom
variables in the RL program. For detailed usage methods, please refer to the corresponding
instructions in the RL command chapter.

10.13.6Event
The OPC-UA server supports notifying the OPCUA client of some state changes of the robot through
event. The currently supported reporting events are shown in the following table.

Event Severity
Power on/off 100

Manual/automatic
switching

100

Program running/stop 100
Emergency stop triggered 600
Safety gate stop triggered 600
Protection stop triggered 600

Collision alarm 600
The display of client events is shown in the following figure:+

0 11Safety

xCoreControl System User Manual 211

11Safety
11.1Introduction to this chapter

This chapter mainly introduces the settings of xCore safety related functions.

11.2Safety password
A password is required to unlock the safety module, and it is "safety" by default.

1、 To access the safety module, the user must enter the password and click "Unlock" to operate the
safety interface.

2、 After unlocking, the user can enter other interfaces of the safety module without re-entering the
password.

3、 Re-unlocking is required when the user switches back to the safety module from other modules.
4、 After modifying the settings of the safety module, the user needs to click the "OK" button to

confirm the safety parameters.
5、 Regardless of the user permission, operators and other low-permission users are allowed to

modify the safety module parameters after logging in.

The safety password can be changed through Settings —> User Group —> Safety Password.

11.3Joint limit
11.3.1Highlights

The joint limit monitors the parameters of robot joints. When the joint exceeds the threshold, the
robot will immediately stop running, and the RSC robot will enter a safe stop state.
The joint limit mainly includes joint position limit, joint velocity limit, joint torque limit, and joint
power limit. Each limit can be configured with two parameters for users to determine the threshold
based on the current mode (normal mode or reduced mode).
The user has the flexibility to enable or disable specific functionalities as required.

11.3.2Joint position
11.3.2.1Highlights

The joint position limit is used to set the maximum motion range of each joint at the software level to
avoid interference or collision between the robot and peripheral equipment.
During the drag process, the joint angles are also protected by the joint position limit. Drag near the
joint position limit will give the manipulator a rebound force against the direction of the joint position
limit. The range of the drag rebound force is within 10° of the upper and lower joint position limits
set by the HMI interface. Assuming that the joint 1 position limit is −170° to 170°, then the range of
the drag rebound force is [−170° to −160°] and [160° to 170°].

0 11Safety

212 xCoreControl System User Manual

① The "Enable" switch controls whether the joint position limit is enabled;
② The lower limit of joint positions in normal mode shall be less than the upper limit.
③ The joint position limit in reduced mode shall be less than or equal to that in normal

mode.
④ They are the maximum and minimum limits of joint positions for the robot.

Warning

1. The joint position limit shall not exceed the mechanical hard limit available to the robot.
2. When the servo firmware supports the maximum range of mechanical motion for collaborative
robots, the joint position limit can be set to the maximum range of mechanical motion for each
joint.

11.3.2.2Handling for moving beyond the joint position limit
In some rare cases, the robot may move beyond the joint position limit, such as triggering an
emergency stop when moving to the limit, and exceeding the joint position limit when executing
STOP 0.
In xCore V2.1 and earlier versions, when the robot has one or more joints outside the joint position
limit, it will be unable to jog or run programs. At this point, it is necessary to first cancel the joint
position limit, then jog the out-of-limit joint back within the joint position limit, and finally enable the
joint position limit again.
In xCore V2.2 and later versions, for non-RSC robots, when the robot moves beyond the joint
position limit, it is allowed to jog the robot back within the joint position limit.
For RSC robots, when the robot moves beyond the joint position limit, it will enter the safe stop state.
At this point, it is necessary to first cancel the joint position limit, then click "emergency reset", jog
the out-of-limit joint back within the joint position limit, and finally enable the joint position limit
again.

Warning

Cancellation of the joint position limit can only be used to jog the out-of-limit joint back within
the normal range when the robot joint exceeds the joint position limit, and the program is unable
to run when the joint position limit is canceled.

11.3.3Joint velocity
Joint velocity limit: The joint velocity limit can be turned on/off by an enable switch. When it is
enabled, the angular velocity of robot joints will be monitored in real time. Depending on the current
mode (normal mode or reduced mode), different monitoring parameters are used to determine the
threshold. If any joint angular velocity exceeds the threshold, the robot will immediately plan to stop
and power off, and the RSC robot will enter a safe stop state.

11.3.4Joint torque

0 11Safety

xCoreControl System User Manual 213

Joint torque limit: The joint torque limit can be turned on/off by an enable switch. When it is enabled,
the torque of robot joints will be monitored in real time. Depending on the current mode (normal
mode or reduced mode), different monitoring parameters are used to determine the threshold. If any
joint torque exceeds the threshold, the robot will immediately plan to stop and power off, and the
RSC robot will enter a safe stop state.

11.3.5Joint power
Joint power limit: The joint power limit can be turned on/off by an enable switch. When it is enabled,
the power of robot joints will be monitored in real time. Depending on the current mode (normal
mode or reduced mode), different monitoring parameters are used to determine the threshold. If any
joint power exceeds the threshold, the robot will immediately plan to stop and power off; and the
RSC robot will enter a safe stop state.

11.4Robot limits

①

Velocity limit: The velocity limit covers TCP linear velocity, TCP angular velocity,
elbow linear velocity, and elbow angular velocity. Additionally, each velocity limit can
be turned on/off by an independent enable switch. When it is enabled, the velocity of
robots will be monitored in real time.
Depending on the current mode (normal mode or reduced mode), different monitoring
parameters are used to determine the threshold. For example, "TCP linear velocity" is
used as the threshold in normal mode, and "reduced TCP linear velocity" is used as the
threshold in reduced mode.
When any monitored value exceeds the threshold, the robot will immediately plan to stop
and power off, and the RSC robot will enter a safe stop state.

② Reduced velocity: If the user turns on the reduced velocity, in the reduced mode, the

0 11Safety

214 xCoreControl System User Manual

robot will move at the set TCP velocity and joint velocity.

③

Robot power limit: The robot power limit can be turned on/off by an enable switch.
When it is enabled, the power of robots will be monitored in real time, and different
monitoring thresholds will be used based on the current mode (normal mode or reduced
mode).
If the robot power exceeds the threshold, the robot will immediately plan to stop and
power off, and the RSC robot will enter a safe stop state.

④

Momentum limit: The momentum limit can be turned on/off by an enable switch. When
it is enabled, the momentum of robots will be monitored in real time, and different
monitoring thresholds will be used based on the current mode (normal mode or reduced
mode).
If the momentum exceeds the threshold, the robot will immediately plan to stop and
power off, and the RSC robot will enter a safe stop state.

⑤

Drag velocity limit: The drag velocity limit can be turned on/off by an enable switch,
which is special for RSC robots. When it is enabled, if the drag velocity of the
collaborative robot exceeds 250 mm/s, the robot will be stopped and powered off
instantly to enter a safe stop state.

11.5Virtual wall
11.5.1Highlights

The virtual wall is specifically designed to confine the working area at the end of the flange in the
Cartesian space (translation only) drag scene of the xMate collaborative robot. As users approach this
virtual barrier, they will encounter a reactive force exerted by it.
The typical usage scenario involves medical professionals utilizing xMate collaborative robots as
auxiliary tools for surgical operations through dragging actions. In order to enhance safety and
prevent any potential misoperations, establishing a virtual wall becomes crucial to restrict the
operational space of the robot's flange.

①
The "Enable" switch controls whether the virtual wall is enabled; Click “OK” to take
effect;

② Introduction to the steps for using the virtual wall function;

③

Virtual wall types, including sphere and cuboid;
Virtual wall parameters, including center points;
Note: The parameters set within the "boundary" must be greater than a value, such as 200
mm or above for the cuboid, and 100 mm or above for the sphere.

Note: In the extreme case of excessive drag force and speed, the robot may exceed the range of the
virtual wall, and the system will provide corresponding prompts.

11.6Collision detection
11.6.1Highlights

Collision detection is a passive function that relies on the estimation of the robot's dynamic model. It
enables timely identification of unexpected collisions with the external environment during robot
operation, allowing for prompt implementation of pre-set measures to mitigate any potential damage.

11.6.1.1Setting mode
The "whole setting" and "single joint setting" are available, and at least one of them shall be checked.
According to different setting modes, the sensitivity of the whole robot or single joint can be adjusted.
The higher the percentage, the higher the sensitivity, and the easier it is for the robot to detect
collisions. The factory default sensitivity is set to 100%, which can be adjusted by the user according
to their needs.
Different sensitivity thresholds will be used based on the current mode (normal mode or reduced

0 11Safety

xCoreControl System User Manual 215

mode).

11.6.1.2Impact limit
Impact limit (including TCP impact and elbow impact): The impact limit can be turned on/off by an
enable switch (collision detection is also turned on). When it is enabled, the TCP impact and elbow
impact of the robot will be monitored in real time. Depending on the current mode (normal mode or
reduced mode), different monitoring parameters are used to determine the threshold.
When any monitored value exceeds the threshold, the robot will enable the trigger behavior of
collision detection, and the RSC robot will enter a safe stop state.

11.6.1.3Trigger behavior
The trigger behavior only includes a soft stop.
Soft stop: a collision detection stop method for robots and high stiffness environments. The greater
the soft, the faster the response of the robot, and the greater the load of the robot joint; soft generally
uses the default 0. After a safe stop, the robot will automatically power off. In this state, the robot
supports direct power-on and continues to run the program along the current path.

11.6.1.4Driving torque limit
The driving torque limit is used to limit the maximum driving torque of the reducer and protect the
important parts of the driving chain and the mechanical zero.
The driving torque limit is available for collision protection*. When the controller detects that the
driving torque exceeds the limit, the robot will trigger an error message indicating that the driving
torque exceeds the limit. For the first start, the robot will use the default driving torque limit.

11.6.1.5Parameter identification
Collision detection parameter identification is used to identify and set the internal parameters of the
collision detection algorithm to improve the accuracy of impact monitoring, reduce the probability of
false alarms, and optimize collision detection performance.
Collision detection parameter identification supports "delay compensation parameter" identification
and setting.

The detailed steps for enabling collision detection parameter identification are as follows:

0 11Safety

216 xCoreControl System User Manual

Step Graphical Representation Explanation

1. Disable collision detection
and collision protection.

The user needs to turn
off the collision
protection on the
production interface.

1. Click the "Start
Identification" button.

The dynamic
feedforward needs to be
enabled in advance for
the collision detection
parameter identification.

2. Switch to automatic mode
and power on.

3. Run the RL program for
identification.

The user can use a
dedicated identification
program or any RL
program that has
collision detection.

4. After the identification
result converges, stop the
identification.

5. Save the identification
result and set the delay
compensation parameters.

The delay compensation
parameters take effect
immediately after
clicking "OK".

The detailed steps for manually setting delay compensation parameters are as follows:
Step Graphical Representation Explanation

1. Input
delay
compensatio
n parameters.

The manual
settings of
delay
compensatio
n parameters
cannot
exceed the
range.

2. Click the
"OK" button
to confirm
parameters.

Note

1. In special cases, if it is necessary to identify collision detection parameters during production,
collision detection and collision protection can be enabled during identification (not
recommended).
2. To obtain accurate identification results of each joint, all joints in the identification program
need to move as far as possible and as fast as possible.
3. The results of collision detection parameter identification are not fixed values with slight
differences.

11.6.1.6Maximum output torque monitoring

0 11Safety

xCoreControl System User Manual 217

The maximum output monitoring is used to monitor the maximum output torque of the motor of each
joint during the period from enabling to disabling. Users can adjust the driving torque limit of each
joint according to the maximum output torque monitoring parameters.

Note

The maximum output torque monitoring is disabled by default after the controller is restarted.

11.6.2Notes
1. During program execution, if the robot collides with external devices while moving at high speed
and the collision force exceeds a certain threshold, triggering an alarm and stopping the servo driver,
the robot can only resume operation after clearing the collision, restarting itself, and resetting the
servo alarm.
2. Incorrect sensitivity mode selected may cause a false collision alarm. Please select different
sensitivity thresholds for each application scenario.
3. The collision detection sensitivity is affected by the robot hardware, and there are differences in
sensitivity thresholds between different robots. Currently, the three sensitivity modes only provide a
set of nominal values. The user with higher requirements for collision detection sensitivity can
fine-tune the sensitivity of each axis based on specific application scenarios through the single-axis
setting or adjust the detection sensitivity online through RL commands.
4. After collision detection and safety monitoring are triggered, a pop-up window will appear, and
you must click "Confirm" to manually clear the alarm before continuing to run.
5. Collision detection is enabled by default at the factory for collaborative robots.
6. For the description of the collision protection*, see the user manual of the production interface.

Warning

Before using collision detection, the user must ensure that the following parameters are set
correctly. Otherwise, the controller may fail to calculate the correct output torque, resulting in a
false alarm.
1. Robot model
2. Robot installation method
3. Load information (tool)
4. Mechanical and sensor zeros
5. Robot body parameters

11.7Safe region
11.7.1Highlights

Safe regions are used to set the behavior of the end-effector and elbow in and out of a region.
The user can define several safe regions in the space (currently supports up to 10). When the robot
enters and exits the safe region, it selectively triggers the preset safety behavior, and automatically
modifies the register value (binding the register function code of the safe region).
The safe region retraction function is described in 11.7.3.

0 11Safety

218 xCoreControl System User Manual

①
"Overall Switch": Turns on or off the safe region function, when this switch is off, all
safe regions are invalid.

②

"Signal Control": After opening, a register signal can be used to control whether a certain
safe region is turned on.
Each safe region supports two ways to set whether it is turned on: one is through HMI
Settings, and the other is through Register Settings (register function code "enable _ safe
_ region01 ~ enable _ safe _ region10", with bool or int16 type, and read-only).
Note: When the "Signal Control" is turned on, enabling/disabling the safe region is
determined by the bound register, and the button under the "Enable/Disable" bar on the
HMI will not take effect. When the "Signal Control" is turned off, the state of each safe
region is determined by the "Enable/Disable" on the HMI.

③

Region monitoring: The relationship between the tool checked and regions are displayed.
Icon Explanation

Region disabled

Inside the working region, and
non-triggered

Outside the forbidden region, and
non-triggered

Outside the working region, and
non-triggered

Inside the forbidden region, and triggered

0 11Safety

xCoreControl System User Manual 219

➀

Different shapes for region selection support different types of region settings, as shown
in the table below.

Region Shape Region Type
Cuboid Working region, forbidden region, and

shared region
Plane Working region and forbidden region
Sphere Working region, forbidden region, and

shared region
Cone Forbidden region for the inner part of the

cone and working region for the outer
part of the cone

Shared region: For a shared region, it is required to bind DIDO. If the DI is true, it
indicates that the region is occupied and the robot will pause and wait outside the region
when it is about to enter the region. When the DI is false, it indicates that the region is
unoccupied, the robot will continue to move into the shared region, and the DO is set to
true. It is unnecessary to set the trigger behavior of the shared region. When the robot is
about to enter the occupied shared region, its behavior is to pause and wait. When the
robot has entered the occupied shared region, its behavior is to slow down and stop at
maximum capability.

②

Region teaching:
For cuboid regions, there are two teaching methods, namely center point teaching and
two-point teaching.
Center point teaching: Click to get the current TCP pose (TCP relative to the base frame)
to determine the center point pose of the region, and then manually set the length, width,
and height of the cuboid.
Two-point teaching: Teach two points (two points on the cuboid diagonal) to determine
the cuboid region, and then click "Confirm Point 1" —> "Confirm Point 2" —>
"Confirm".

The plane region is determined by teaching or manually inputting the position (X, Y, Z),

0 11Safety

220 xCoreControl System User Manual

and only manual input is available for the vector temporarily. The Z-axis direction is the
safe region.

The sphere region is determined by teaching or manually inputting the center point pose
and inputting the radius.

The sphere region is determined by teaching or manually inputting the center point pose
and inputting the radius and height.

③

Trigger behaviors include no behavior, normal mode enabled, reduced mode triggered,
reduced mode enabled, and normal/reduced mode enabled.
No behavior: the robot has no specific action;

Normal mode enabled: In the normal mode, when the tool is about to enter the forbidden
region, the planning to stop will be triggered; and when the tool has entered the
forbidden region, the maximum capacity to slow down and stop will be triggered.

Reduced mode triggered: When the tool enters the forbidden region, the reduced mode
will be triggered.

Reduced mode enabled: In the reduced mode, when the tool is about to enter the
forbidden region, the planning to stop will be triggered; and when the tool has entered
the forbidden region, the maximum capacity to slow down and stop will be triggered.

Normal/Reduced mode enabled: In the normal/reduced mode, when the tool is about to
enter the forbidden region, the planning to stop will be triggered; and when the tool has
entered the forbidden region, the maximum capacity to slow down and stop will be
triggered.

④

The state of the region-bound register after triggering includes True/False.
True: the register output signal is true when the safe region triggers a safety behavior,
and vice versa; (output true when entering the forbidden region).
False: the register output signal is false when the safe region triggers a safety behavior,
and vice versa; (output false when entering the forbidden region).

0 11Safety

xCoreControl System User Manual 221

11.7.2Association of safe region and register
11.7.2.1Safe region status output

Step Graphical Representation Explanation

1. First, create a new register, and
select the type as write-only;

The left figure is for
example only;

2. Select the function code
"sta_safeRegion01−sta_safeRegion10",
indicating binding the triggering status
of the corresponding safe region to the
current newly-created register.

11.7.2.2Register control safe region enable
Step Graphical Representation Explanation

1. First, create a new register, and select the
type as read-only;

The left figure
is for example
only;

2. Select the function code
"enable_safe_region01−enable_safe_region1
0", indicating binding the control switch of
the corresponding safe region to the current
newly-created register;

11.7.3Safe region retraction function
11.7.3.1Retraction function introduction
The safe region retraction function refers to the capability that when the robot is within a forbidden region, activating the safe
region retraction button will directly move the robot out of the forbidden region without requiring deactivation of all safe regions.

➀
The button is the retraction activation button. When region monitoring shows the current
position is within the forbidden region of a planar safe region and the region is in an

0 11Safety

222 xCoreControl System User Manual

active mode (normal mode active, reduced mode active, or both normal and reduced
modes active), the retraction button is allowed to be enabled. In all other cases, the
retraction button is not permitted to be enabled.

Upon completion of retraction for all planar safe regions, the retraction button will
automatically deactivate

②

Among all region shapes, only planar safe regions support the retraction function
Region Shape Support Safe Region Retraction

Cuboid Not supported
Plane Supported
Sphere Not supported
Cone Not supported

③

The retraction button can only be enabled when region monitoring displays red
(indicating presence within a forbidden region).

④

The retraction status is divided into two types: one is "In Retraction", indicating that the
current region is undergoing retraction, where multiple regions can simultaneously be in
retraction; the other status is "Idle", indicating that the current region is either waiting or
does not require retraction.

0 11Safety

xCoreControl System User Manual 223

11.7.3.2Retraction function operation procedure

➀

When the robot enters a planar forbidden region, the system will prompt that it has entered
the forbidden region and all motion operations will be disabled. If you want to move the
robot out of the forbidden region at this time, you can turn on the retraction button to initiate
retraction.

②

After activating the retraction button, the status changes to "In Retraction" and power-on
operations become available. For RSC robots, after retraction activation, you need to
additionally click the emergency stop reset via the HMI interface; after the reset, power-on
operations can be initiated.

③

After power-on, jog operation is permitted only in the direction away from the forbidden
region. Note: Retraction only permits jog operation (all other motion operations are
prohibited), and jog is restricted to Cartesian X/Y/Z linear movements (all other motion
modes are forbidden).
If the jog direction is not oriented away from the forbidden region, the robot will prohibit
motion and report an error as follows:

0 11Safety

224 xCoreControl System User Manual

④

When retraction is completed, the retraction button will automatically deactivate and the
retraction status will change to "Idle". Upon completion of retraction, all safe regions will
resume normal monitoring operations.

11.8Tool setting
11.8.1Tool position

The tool position limit is available to limit the positions of flanges, elbows, real-time tools, and two
fixed tools simultaneously. An envelope can be specified for each position. When the envelope of any
position exceeds the setting of the safe region, the behavior of the safe region will be triggered
(normal mode enabled, reduced mode triggered, etc.).

Tool envelope: The tool envelope includes three shapes, namely no envelope, cuboid, and sphere.
Real-time tool: When RL runs motion commands, the real-time tool is the tool in the command.
When there is no motion command, the real-time tool is the tool selected on the upper right of the
HMI. The envelope of the real-time tool can be set when editing the tool (global tool list in the frame
calibration and tool list in the project).

11.8.2Tool orientation

① The "Enable" switch can turn on/off orientation limits;

②
The orientation limit function only monitors one object at a time, and can select one from
flange, tool 1, or tool 2;

③
Angle: When the orientation function is enabled, the orientation of the selected object is
used as a reference, and a cone formed according to the set angle is used as the allowable

0 11Safety

xCoreControl System User Manual 225

range of the attitude; when the attitude of the selected object exceeds the range of the
cone, a safe stop will be triggered;

11.9Safety position
11.9.1Highlights

The safety position function refers to the binding register outputting a signal indicating the robot's
presence in the predetermined safety position. Through this function, users can ascertain the relative
positioning of the robot with respect to the safety position.
xCore control system supports up to 8 safety positions with joint angles as reference. Each safety
position corresponds to a register function code (type: bool or int16, read/write: write only,
sta_safe_jnt_pos1~sta_safe_jnt_pos8). When the current joint angle of the robot and the joint angle
set for a safety position are within the allowable error, the value of the register to which the
corresponding register function code for the safety position is bound to will be modified
automatically (when within the allowable error of the safety position, if the register type is bool, the
register value is true; if the register type is int16, the register value is 1).
The safety Home is special for RSC robots, and a safety position can be checked as the safety Home.
After it is checked, a safety DO signal can be output if each joint of the robot reaches the set range. If
none is checked, the safety Home is disabled.

① Enable: A safety position can be enabled or not.
② Safety Home: A safety position can be checked as a safety Home.

③
No.: After clicking, the user can set the parameters for the safety position on the right
side.

④
"Joint Coordinate" corresponding to safety positions;
It can be manually updated; you can also click "Update Position" to update the current
joint position data of the robot;

⑤
The "Allowable Error" corresponding to the safety position, when the current joint angle
and "Joint Coordinate" of the robot are less than the "Allowable Error", the robot is
considered to be in the safety position;

0 11Safety

226 xCoreControl System User Manual

11.9.2Association of safety position and register
Step Graphical Representation Explanation

1. First, create a new register, and
select the type as write-only;

The left figure is
for example only;

2. Select the function code
"sta_safe_jnt_pos1−sta_safe_jnt_pos
8", indicating binding the feedback
status of the corresponding safety
position to the current newly-created
register.

11.10Safety checksum
To modify the safety settings, click the "OK" button at the lower right of the interface and confirm the
settings after the safety checksum.
The "Safety Checksum" icon displays a combination of four digits of "number + letter" to allow the
user to understand the status of safety-related settings. When there is a change in safety-related
settings, it will automatically calculate and generate a new combination of four digits of "number +
letter".
After clicking the icon, the current safety settings will be available, including the joint limit, robot
limit, virtual wall, collision detection, safe region, tool settings, and safety position.
After modifying the parameters of these items, clicking the "OK" button will trigger a pop-up
window displaying the safety checksum. After clicking the "OK" button, the safety parameters will be
set successfully, and the safety checksum will also change accordingly.

11.11Safety controller
The xCore control system can be optionally equipped with an RSC safety controller, which is a safety
module that complies with functional certification and performs various internal safety-related
calculations and protections. The safety functions of the xCore control system are processed in
parallel, forming a dual safety architecture.
To ensure the data and parameter integrity of the safety controller, real-time data transmission adopts
the FSoe communication mechanism for accurate transmission, while non-real-time data utilizes a
secure synchronization mechanism with a synchronization time of 5s−10s.
For robots equipped with safety controllers, the safeboard type is ROKAE_RSC as depicted in the
figure below.

0 11Safety

xCoreControl System User Manual 227

11.11.1Changes after equipping safety controllers
In addition to the functions displayed on the subsequent safety controller configuration interface,
there are several changes in the use of robots equipped with safety controllers.

11.11.1.1Changes to robot motor state
"Safety stop state" is added to the robot state to indicate the safety state caused by the limits of the
safety controller.
Safe stop
state

The robot is in a safe stop state, which means that the safety controller
detects that the work or communication is abnormal, or a parameter
exceeds the safety threshold set by the safety controller, and the robot
cannot be powered on.

11.11.1.2Added robot reset
When the robot is in any of the "emergency stop state", "safety gate state" or "safe stop state", to reset
it to the "power-off state", you must complete the following 2 steps:
Step 1: Eliminate the operation or condition that triggers the above three states, such as rotating the
emergency stop button to "OFF" position, clearing the safety gate trigger signal, removing the safety
overrun factor, or disabling the corresponding safety limit;
Step 2: Click "Reset" button on the interface, and the robot will reset to the "power-off state".

11.11.1.3Changes to the safety gate logic
For robots without safety controllers, when the robot is in automatic mode and receives the signal of
safety gate closed, the robot will be powered off immediately.
For robots with safety controllers, when the robot is in automatic mode and receives a signal of safety
gate closed, the RL program will be suspended, and the robot will not be powered off. In this
situation, the robot is unable to run the RL program or step through the RL program. If you want to
restore the robot's status, you can: execute the signal to disconnect the safety gate, and click on the
"Reset" signal on the HMI.

11.11.1.4Time difference between zero calibration and friction parameter setting
The zero information and the friction parameter information of the robot need to be synchronized to
the safety controller to ensure the basic safety restriction function of the safety controller to be used
normally. Therefore, when the user performs zero calibration or sets friction parameters, the
controller will actively synchronize the updated parameters with the safety controller, which takes
about 5s−10s to wait. At this point, the interface is as shown in the figure below, and the user is
unable to operate and use the robot.

11.11.2Safety DO configuration
The safety controller has four channels of safety DO signals. The user can map several safety state
signals to the four safety DOs.

0 11Safety

228 xCoreControl System User Manual

①
E-stop output: When the robot is in the E-stop state, the output is true. Otherwise, it is
false.

②
Robot in motion: When the robot RL program is in operation, the output is true, but
when it is not in operation, the output is false.

③
Safety Home point: When the robot is within the range of the safety Home point of
safety controller, the output is true. Otherwise, it is false.

④
Reduced mode: When the robot is in reduced mode, the output is true. Otherwise, it is
false.

⑤ Drag mode: The robot is in drag mode.

⑥
Robot still on: Provided that the robot RL program is in operation (i.e., "Robot in
motion" is true), if the robot joints are in motion, the output is true. Otherwise, it is false.

0 12Process Package

xCoreControl System User Manual 229

12Process Package
The xCore Control System not only offers impeccable core functionalities, but also encompasses an
extensive array of advanced features. In relation to the process packages listed below, we provide
exclusive documentation. Please feel free to reach out to us if you require any further assistance.

12.1Conveyor belt tracking
Main features and limitations:
 Support linear conveyor belt tracking;
 Support two positioning/triggering methods: photoelectric and 2D vision;
 Support industrial six-axis robots; and
 xMate collaborative robots only support the versions with control cabinets.

12.2Track
Main features and limitations:
 Only support linear tracks;

12.3General stacking
Main features and limitations:
 Support the creation of up to 100 stacking processes;
 Support preset stack patterns, including matrix overlapping, criss-cross, and rotating, and

support custom patterns; and
 One stacking process supports the creation of up to 100 plane layouts and up to 50 layers, and

one plane layout supports the creation of up to 200 work objects.

0 12Process Package

230 xCoreControl System User Manual

12.4Tray
Main features and limitations:
 Support up to 100 tray processes;
 Support custom stacking patterns of robot, including parallel pattern and S-shaped pattern; and
 One tray process supports up to 16 plane layouts, and one plane layout supports up to 999 work

objects.

12.5PV typesetting
Please contact ROKAE for more information.

12.6PV inserting
Please contact ROKAE for more information.

0 13Log

xCoreControl System User Manual 231

13Log
The log module includes eight interfaces, namely HMI logs, controller logs, operation logs, log
timelines, internal logs, diagnostic settings, hardware status, and diagnostic data monitoring.

13.1HMI logs
The HMI logs interface displays the current user's HMI operation log information, and this interface
includes filtering criteria area, search area, display page, etc. The user can click "Export Log" to
export the desired HMI log information.

①
Filtering criteria area, where the user can choose to view only the controller logs of
the current controller or the ones connected to the HMI, as well as select the log
level for further filtering.

② Search area, where the logs can be searched by the input of keywords.

③
Log display page, where log title, user, type, and generation time are displayed. The
previous and next pages can be switched by clicking on "Previous/Next" buttons.

④ The "Export Log" button can be clicked to export the log to a CSV format file.

13.2Controller logs
The controller logs interface displays the controller log information of the current robot, and this
interface includes filtering criteria area, search area, and display page. The User can view the
controller log information here.

① Filtering criteria area, where the user can select log level for further filtering.

② Search area, where the logs can be searched by the input of keywords.

③
Log display page, where basic information such as log number, title, generation
time, and content is displayed. The user can press Previous/Next to switch between

0 13Log

232 xCoreControl System User Manual

the previous and next pages.

13.3Operation logs
Compared with controller logs, operation logs mainly record the key commands that the robot has
executed, including the following information:
1. Start and stop of the robot and execution of motion commands
2. Execution of two logical commands IF-ELSE and WAIT UNTIL
3. Execution of commands SetDO\PulseReg\PulseDO
4. JOG, drag, and regain path
5. Emergency stop, pause, and start
6. Register status codes output externally, and control codes received from external controllers
7. Changes in safe regions
8. Triggering of functions such as collision detection and diagnostic data saving
9. External data read by communication commands

① Filtering criteria area, where the user can select log level for further filtering.

② Search area, where the logs can be searched by the input of keywords.

③
Log display page, where basic information such as title, generation time, and
content is displayed. The user can press Previous/Next to switch between the
previous and next pages.

13.4Log timeline
The log timeline interface displays both HMI and controller log information in chronological order,
and this interface includes search area and display page, allowing the user to search for HMI logs and
controller logs at different time periods.

0 13Log

xCoreControl System User Manual 233

① Search area, where the user can search logs with a specific time range

②
Log display page, where HMI logs are displayed on the left and RC logs on the
right

13.5Internal logs
The internal logs interface has functions such as providing a basis for troubleshooting technical issues,
robot malfunctions, etc. and pinpointing the cause of problems, and this interface mainly includes
search area and display page.

① Internal logs search area

② Internal logs display page

13.6Hardware status
It is used to monitor the hardware status of the IPC and the teach pendant, including memory usage,
disk usage, network adapter status, CPU frequency, temperature, and usage. The interface consists of
an enable switch, an IPC hardware status display area, and a teach pendant hardware status display
area.

0 13Log

234 xCoreControl System User Manual

① Hardware status monitoring switch

② IPC hardware status display area

③ Teach pendant hardware status display area

13.7Diagnostic setting
This interface is used to assist developers with the diagnosis of the servo, ECAT, and other equipment,
and enable real-time thread alarm and monitoring and other functions. Since enabling the diagnostic
function will increase the workload of the controller, do not turn it on in actual production unless
necessary.

0 13Log

xCoreControl System User Manual 235

Servo diagnosis
The servo diagnostic module is used to save the data errors in the
servo. Click the Save button. The diagnostic data can be exported
after 5s.

EC diagnosis The EC software diagnosis function can be used to assist in
troubleshooting ECAT devices.

Timeout warning It aims to send real-time thread timeout warnings after enabled.
Turning zone It reports a turning zone warning after it is enabled.
Delay motion The delay in motion will be prolonged after it is enabled.

Lookahead turning
zone It reports a lookahead turning zone warning after it is enabled;

The network test is used to check the communication status between the industrial control computer
of the robot and other devices, verifying whether the network is functioning properly. When the teach
pendant is connected to the controller, it performs the controller network test function, which checks
the network connection between the controller's industrial control computer and other devices. When
the teach pendant is not connected to the controller, it performs the teach pendant network test
function, which checks the network connection between the teach pendant and the industrial control
computer.

13.8Working condition verification
The working condition verification function assists developers and field personnel in collecting
machine status data during RL program execution for analyzing machine issues. This function is
supported in the PC version of the HMI but not in the teach pendant HMI. In xCore 3.1, the export of
collected data and curve plotting are no longer supported

This function is located in the diagnostic data monitoring page of the log module, where users can
start data collection by clicking the data acquisition button during RL operation, stop collection by
clicking the button again after task completion, and then click verification calculation to obtain the
working condition analysis results.

0 13Log

236 xCoreControl System User Manual

0 14Options

xCoreControl System User Manual 237

14Options
The options page mainly involves robot connection, software upgrade, import and export, and feature
demonstration. Note: Using a USB drive with excessively large capacity may result in slow copying
speeds, which can affect backup and export performance.

14.1Connect

①

Search for available robots: Search for all robots in the same LAN (except direct
connection). When the robot is connected, it will be displayed that the controller service
and the update service are both connected.
If the robot can not be found when Robot Assist and the robot are in the same LAN, or
the real-time position of the robot is not displayed on the 3D interface after connecting
the robot, the user can enter the "Settings" - "HMI Settings" interface and select the IP
address assigned to the LAN in the Bound IPAddress drop-down box to solve the above
two problems.

② Display the connection status, and the user can select to disconnect it.

③

Enable the function of automatic reconnection:
When the network between the robot controller and Robot Assist is disconnected, Robot
Assist will try reconnection automatically and will stop trying after the preset
reconnection time.

④

There are two ways for reconnection:
(1) Check the checkbox: the total duration of reconnection = single duration * the
number of reconnections. The user can specify a single duration and the number of
connections and within the total reconnection duration, Robot Assist will attempt to
perform automatic reconnections.
(2) Uncheck the checkbox: Robot Assist will keep trying to reconnect the controller.

14.2About ROKAE
It introduces software version, component information, and company profile.

14.3Software upgrade
14.3.1Controller upgrade

Through the controller upgrade function, it is possible to: (1) upgrade the controller software version
and (2) restore data.
Upgrade controller version: Select the upgrade package, click "Upload", and the interface will prompt
"Uploaded successfully". Follow the pop-up prompt to restart the controller.
Restore data: Select the data package to be restored, check the data to be restored, and click "Upload".

0 14Options

238 xCoreControl System User Manual

Follow the pop-up prompt to restart the controller.

14.3.2Controller backup
This function can achieve data backup of the controller. Check the data for backup, click "Open" to select the backup directory,

and then click "Export". The exported file is an encrypted file in RPA format.

Robot configuration: controller settings - system configuration; calibration - zero point voltage value of torque sensor; body

parameters - overload coefficient; motion parameters - parameters and safety control; etc.

Native parameters: calibration — encoder values, angle calibration settings, and base frame; dynamic settings — (third order)

friction coefficient; body parameters — DH parameters, reduction ratio, etc.

Interactive data: dynamic settings - feedforward and constraint switch; motion parameters - stopping distance, Search, and

minimum radius of turning zone, Conf, force control parameters, xPanel configuration, quick adjustment, teach pendant mode,

communication, and safety.

Controller logs: version information files, user configuration files, controller logs, and project logs. Only the logs generated in the

last three days can be exported, and more logs can be exported in the log module on the export page.

HMI logs: syslog, mirror version description file, and version information file of the teach pendant.

System logs: IPC syslogs, interfaces files, and rc.local files.

14.3.3HMI upgrade
Only for xPad2, and it aims to upgrade the teach pendant HMI software. Click "Open", select the
HMI software upgrade package in the USB drive directory, and click "Upgrade" to start the HMI
upgrade process. After the HMI upgrade is completed, the HMI software will start automatically and
the HMI upgrade is finished.

14.3.4Restart robot
It aims to restart the IPC system, and the upgrade service connection needs to be established for this
operation.

14.3.5Erase configuration
It aims to erase custom configurations, robot configurations, body parameters, project data, etc. For

0 14Options

xCoreControl System User Manual 239

instructions on the above data, please refer to the "Controller Backup" section. Performing this
function will still retain the relevant operation logs of the control system. Please use it with caution.
Check the content to be erased, click "Erase Configuration", and manually restart the robot to take
effect.
Note: The upgrade service connection needs to be established for this operation.

14.3.6Erase all configurations
It aims to restore the control system to its factory default state. This function will reset configuration
files, project data, and interactive data within the control system but still retain relevant logs. Please
use it with caution.
Note: The upgrade service connection needs to be established for this operation.

14.3.7Example of control system upgrade
When the user wants to upgrade the control system, contact ROKAE to obtain the new version of the
control system installation package. Refer to the operation steps below:

Step Picture Explanation
1. Prepare the installation
package.
2. Open the HMI and connect to
the controller and the upgrade
service.

3. Before upgrading, it is
recommended to back up the
control system to avoid the loss
of important data. You can
check the backup content in the
"Backup" option and select
"Export Folder" to export the
backup.

This step is not
mandatory.

4. Select the installation
package, and the upgrade option
will be configured according to
the installation package. Click
"Upload".

Do not select
"Interactive Data",
"Robot
Configuration",
"Controller Logs",
"Project Data",
"Demo Case", or
"Servo" in the
"Controller Upgrade"
option.

5. After successful upload, the
HMI will prompt to restart the
robot and upon the restart, the
control system upgrade is
completed.

Note

1. When the controller version does not match the HMI version, the HMI will display real-time log
information on the top status bar, with the content stating "Version mismatch. Recommend HMI
version: [xxx]".
2. When the controller version does not match the configuration file version, the HMI will pop up
a warning in the middle after booting up, as shown in the following figure. At this time, any robot
motion operation will be disabled, and the correct version of the configuration file needs to be
upgraded according to the controller log information.

0 14Options

240 xCoreControl System User Manual

14.4Export
The export function can be used to back up controller related settings.

As shown in the figure, select the target folder, select the content to be exported, and click "OK".
The available export contents are as follows:

Function
Module

Export Content

Programming Specific individual project

Setting

Controller settings - other settings
HMI settings - basic settings, theme, and workspace directory
User group- UserLogin
Dynamic settings - dynamic feedforward and dynamic constraint
Global Coordinate System - Global Tools, Global Workpieces, Global
Coordinate System
Force control parameters - force control parameters, force control model, drag
optimization
Motion parameters - motion parameters, AccSet, safety control, Search
commad, minimum turning zone, default Conf
Error code filtering
Custom buttons

Communication

System IO
External communication
IO device
Bus devices
End-effector
RCI settings
Serial port settings
Encoder

Safety

Joint limitations
Robot restrictions
Collision detection
Safe region
Safety position
Virtual Wall

Process Package Conveyor belt

Log

Controller logs
HMI logs
Project logs
Sys logs
Backup Engineering
Select all controller logs

Options Connect
Robot

configuration
Model file

14.5Import
The import function can import controller settings.

0 14Options

xCoreControl System User Manual 241

Select the zip package you want to import, and after opening the package, the configuration items
contained in the zip package will be automatically checked while the configuration items that are not
contained will be grayed out.
The user can choose specific import content as the case may be. Note: After importing, the control
system needs to be restarted to take effect.

14.6File manager
It is intended to quickly open several folders involved in the Robot Assist software.
Note: This function is available only for PC HMI software.

Cache folder: Store the cache of Robot Assist.
Log folder: Store Robot Assist logs. The logs in the folder are consistent with the internal logs on the
diagnostic interface. You can click here to enter the folder for log copying.
Workplace folder: Store robot project files.

14.7Demos
14.7.1Seven-axis redundant motion

It is used for the demonstration of seven-axis redundant motion, including circular motion, linear
motion, turning, and null-space motion, and it supports xMate ER PRO.

Step Graphical Representation Explanation

0 14Options

242 xCoreControl System User Manual

1. Select Option - Demo -
Seven-axis redundant motion
and enable Demo to enter the
demonstration mode.

2. Click the mode switching
button on the bottom
status bar and switch to Auto
Mode.

3. Click the Power-on button

on the bottom status bar
to power on the robot.

4. Click "Play Demo" in the
upper right corner.

0 14Options

xCoreControl System User Manual 243

5. After playing the demo,
click "Stop Demo" in the
upper right corner.

14.7.2Obstacle avoidance
When the demonstration manipulator enters a narrow and deep box, it will not interfere with the box
structure by adjusting its orientation through null-space self-motion, which enables the robot to
perform the pickup and delivery task successfully.

0 14Options

244 xCoreControl System User Manual

Step Graphical Representation Explanation

1. Select Option - Demo
- Obstacle avoidance
and enable Demo to
enter the demonstration
mode.

2. Click the mode
switching button
on the bottom status bar
and switch to Auto
Mode.

3. Click the Power-on

button on the
bottom status bar to
power on the robot.

4. Click "Play Demo" in
the upper right corner.

0 14Options

xCoreControl System User Manual 245

5. After playing the
demo, click "Stop
Demo" in the upper
right corner.

14.7.3Collision detection
It aims to demonstrate the function of collision detection.
Collision detection sensitivity settings: Support the single-axis setting and the high, medium, or low
setting.
When the robot detects a collision, it stops softly. The press to continue is unavailable in version 3.0
collision detection.
When using the demo collision detection function, the collision protection* is temporarily turned off
if the collision protection* function is turned on.

0 14Options

246 xCoreControl System User Manual

Step Graphical Representation Explanation

1. Select Option - Demo -
Collision detection and
enable Demo to enter the
demonstration mode.

2. Click the mode switching
button on the bottom
status bar and switch to
Auto Mode.

3. Click the Power-on

button on the bottom
status bar to power on the
robot.

0 14Options

xCoreControl System User Manual 247

4. Click "Play Demo" in the
upper right corner.

5. After playing the demo,
click "Stop Demo" in the
upper right corner.

To adjust the threshold
of collision detection
sensitivity during a
demonstration, click
"Stop Demo" first and
replay the demo after
adjustment.

14.7.4Compliance demo
It aims to display the compliance control effect of xMate under different stiffness and spatial
conditions.

0 14Options

248 xCoreControl System User Manual

Step Graphical Representation Explanation

1. Select Option - Demo -
Compliance demo and enable
Demo to enter the
demonstration mode.

2. Click the mode switching
button on the bottom
status bar and switch to Auto
Mode.

3. Click the Power-on button

on the bottom status bar
to power on the robot.

0 14Options

xCoreControl System User Manual 249

4. Click "Play Demo" in the
upper right corner.

5. After playing the demo,
click "Stop Demo" in the
upper right corner.

To adjust the stiffness
threshold during the
Compliance demo, click
"Stop Demo" first and
replay the demo after
adjustment.

Warning

During a demonstration, all configurations of the robot have failed. Please note the following:
1. The base frame of the robot coincides with the world frame by default.
2. There is no load at the robot end-effector by default. Otherwise, the demonstration of collision
detection, compliance, and other functions will be affected.

0 15RL Commands

250 xCoreControl System User Manual

15RL Commands
15.1Variable Type
15.1.1Int

Explanation
The range of the integer int variable is -2147483647−2147483647. It is recommended that the value is
within the specified range. If the value is in excess of the range, it will be assigned randomly, and the
maximum value range must not be exceeded when using it.

Example

In the variable list:

It represents the data counter that defines an integer global variable type, and its initial value is 4.

15.1.2Double
Explanation Floating-point numbers, are stored using 8 bytes. Do not exceed the value range when using them.

Example

In the variable list:

It represents the local variable time that defines a floating point, and its initial value is 1.5.

15.1.3Bool

Explanation
The variable bool is mainly used for status or logic judgments. The value is true or false.
When it is assigned an int or double value, non-zero takes the value of true and zero takes the value of
false.

Example

In the variable list:

It indicates that a bool type global variable ifClose is defined and the initial value is true.

15.1.4String

Explanation String-type variables consist of multiple letters or numbers.
Note: They must be placed in double quotation marks "" at the time of defining in RL text.

Example In the variable list:

0 15RL Commands

xCoreControl System User Manual 251

It indicates that a string variable name is defined and initialized to "rokae".

String type variables support the "+" operation for string concatenation, which can achieve string
concatenation.
Example:
name = "Rok" + "ae"
It means that the variable name is assigned to "Rokae".

15.1.5Array

Explanation
An array is a collection of variables of the same type, either one-dimensional or multi-dimensional. The
elements in the array are accessed using subscripts. The subscript of each dimension begins with 1. The
total length of the array should not exceed 1000.

Example

In the variable list:

It indicates that a two-dimensional array that contains 16 integer variables is defined. The value of the
sixth element of line 1 is assigned to 8.

15.1.6byte

Explanation

byte represents the unsigned byte in RL language, same as unsigned char in C++.
The value range is 0−255, and negative values are not allowed. It is generally used in SocketSendByte
instruction.
When the byte variable's value exceeds 255, it is automatically truncated, keeping only the lower 8 bits of
the value, e.g. var byte data2=288, and the value of data2 is 32 after truncation.

Example

In the variable list:

It defines a byte variable data, which has a value of 177.

15.1.7clock

Explanation
The clock is used for timing, and clock-related commands are just like a stopwatch used for timing.
The time accuracy of clock type storage is 0.001s, and the maximum time interval is 45 days (i.e., 45 x 24 x
3600 seconds).

0 15RL Commands

252 xCoreControl System User Manual

Example

In the variable list:

The following example shows how to use variable clock:
Example 1:
ClkStart (clock1);
ClkStop (clock1);
interval=ClkRead(clock1);
ClkReset (clock1);
Interval (pre-declared double variable) reads the interval between ClkStart and ClkStop, in seconds (s).

15.1.8Implicit type conversion

Explanation Currently, during data setup in the variable lists, data types are restricted. Values that do not match the
variable type cannot be successfully entered, thus avoiding implicit type conversion.

Example When defining the integer counter in the variable list, no decimals, only integers, can be entered.

15.1.9Confdata

Explanation

The confdata (Robot Configuration Data) is used to define the morphological configuration data that
corresponds to the spatial target point.
Since the robot mostly uses a rotary joint, any one of the joints exhibits the same status at 1° and 361°.
Therefore, after the form of robot is selected, other measures are required to deal with the multiple-loop
problem of the joint.
For example, when the joint angle is between 0° and 90°, the quadrant number is 0. When the joint angle
is between 90° and 180°, it is marked as 1 and is increased/decreased by 1 for every 90°. When the angle
is negative, the corresponding number of quadrants is also negative, as shown in the following figure (left:
negative joint angle; right: positive joint angle). For robot joints, the angle increases when rotating
anticlockwise and decreases when rotating clockwise. In the figure below, the joint angle decreases as the
joint rotates clockwise, and the corresponding confdata changes as -1->-2->-3->-4 and 3->2->1->0,
respectively.
For the xMate CR and SR collaborative robots, we directly record the rounded-down values of each joint
angle in confdata.
In addition, the same Cartesian space target point corresponds to different inverse kinematics, so it is
necessary to use confdata to specify the form to be selected.

Definition

7 parameters are needed to complete the confdata, including:
cf1, data type: int, the quadrant that corresponds to the Axis 1 angle or the rounded-down joint angle.
cf2, data type: int, the quadrant that corresponds to the Axis 2 angle or the rounded-down joint angle.
cf3, data type: int, the quadrant that corresponds to the Axis 3 angle or the rounded-down joint angle.
cf4, data type: int, the quadrant that corresponds to the Axis 4 angle or the rounded-down joint angle.
cf5, data type: int, the quadrant that corresponds to the Axis 5 angle or the rounded-down joint angle.
cf6, data type: int, the quadrant that corresponds to the Axis 6 angle or the rounded-down joint angle.
cf7, data type: int, the quadrant that corresponds to the Axis 7 angle or the rounded-down joint angle.
cfx, data type: int, the configuration number of the form used by the robot, ranging from 0 to 8.

Example
There are different inverse kinematics for the same end-effector Cartesian space pose. The values of cfx
from 0 to 8 represent each group of inverse kinematic solutions, which are explained in detail as follows.
For 6-axis industrial robots, xMateER collaborative robots, and 7-axis robots:

0 15RL Commands

xCoreControl System User Manual 253

cfx Wrist center is on
Axis 1...

Wrist center on the
lower arm… Wrist angle is...

0 Front Front Positive
1 Front Front Negative
2 Front Rear Positive
3 Front Rear Negative
4 Rear Front Positive
5 Rear Front Negative
6 Rear Rear Positive
7 Rear Rear Negative

For xMateCR collaborative robots (cfx=0 represents the solution that is closer to the joint angle
represented by cf1−6):

cfx Wrist center is on
Axis 1...

Wrist center on the
lower arm… Axis 5 angle is...

0
1 Front Front Negative
2 Front Front Positive
3 Front Rear Negative
4 Front Rear Positive
5 Rear Front Negative
6 Rear Front Positive
7 Rear Rear Negative
8 Rear Rear Positive

For xMateSR collaborative robots, cfx is always 0, indicating the solution that is closer to the joint angle
represented by cf1−6.
For 3-axis industrial robots and 4-axis industrial robots:

cfx Wrist center on the
lower arm…

0 Front
1 Rear

15.1.10jointtarget
Explanation To store the robot’s joint angle and the positions of external axes.

Definition

robax, Robot Axis, data type: double, containing 7 members of double type, which store the angle of the
robot's 7 joints, in Degree.
extax, External Axis, data type: double, containing 6 members of double type, which can store the
position of up to 6 external axes. If the external axis is a rotation axis, the unit is Degree; if the external
axis is a linear axis, the unit is mm.

Example

In the variable list:

The above command defines a point named "jointtarget0" in the joint space. Except that the Axis 6 is 90
degrees, the other axes of the robot are all 0 degrees. The first external axis is set to 10 degrees or 10 mm,
depending on the type of external axis; the remaining external axes are set to zero.

Structure
assignment

jointtarget j1 = J:{-268.649031, 321.536626, 259.344893, 55.143011, 66.111070, 169.543340,
29.916387}{EJ 0,0,0,0,0,0};
Note:
1. 1. J:{...} represents the angles (in degrees) of the robot's 7 joints, with each value being of type

double.
2. {EJ ...} defines the position information of 6 external axes, also of type double. In this example, all

external axis values are set to 0.

15.1.11load

0 15RL Commands

254 xCoreControl System User Manual

Explanation

The variable type load is used to store the dynamic parameters of the robot's load.
There are two main types of robot loads:
 The tool or work object itself installed at the end-effector of the robot;
 Objects that the tool picks up/sucks up.
The variable load does not support individual creation. It can only be manually modified in the tool
calibration interface as a member of the tool-type variables or automatically modified by the control
system using the load identification function.
By defining the dynamic parameters of the load correctly, the robot can achieve optimal performance. The
wrong definition may lead to the following consequences:
 The robot cannot maximize the ability to use the servo system, resulting in degraded performance.
 The accuracy of the path is reduced, and the positioning error increases.
 Overloading of mechanical components results in a reduction in life or damage.

Definition

In the xCore system, the load is treated as a rigid body. There are four parameters for describing the load:
mass, data type: double, the mass of the load, in kg.
cogx, the offset of the center of mass in the X-direction, data type: double, if the tool is mounted on the
robot, cogx records the offset of the center of mass in the X direction of the tool frame; if the external tool
function is used, the cogx records the offset of the center of mass of the load held by the gripper in the X
direction of the work object frame.
cogy, the offset of the center of mass in the Y-direction, data type: double, if the tool is mounted on the
robot, cogy records the offset of the center of mass in the Y direction of the tool frame; if the external tool
function is used, the cogy records the offset of the center of mass of the load held by the gripper in the Y
direction of the work object frame.
cogz, the offset of the center of mass in the Z-direction, data type: double, if the tool is mounted on the
robot, cogz records the offset of the center of mass in the Z direction of the tool frame; if the external tool
function is used, the cogz records the offset of the center of mass of the load held by the gripper in the Z
direction of the work object frame.
q1~q4, quaternions, to record the direction of the principal axis of inertia of the load, data type: double;
When the tool is mounted on the robot, the orientation of the principal axis of inertia is described in the
tool frame. See the figure below for details:

When using an external tool, the direction of the principal axis of inertia is described in the work object
frame. See the figure below:

Flange frame

Tool frame

Load

Load frame

0 15RL Commands

xCoreControl System User Manual 255

Work object frame

Load

Load frame
External tool

tongs

X

Y
Z

X
Y

Y

Z

X

Ix, inertia x, data type: double, the inertia of the load along the x-axis, in kgm2.
Iy, inertia y, data type: double, the inertia of the load along the y-axis, in kgm2.
Iz, inertia z, data type: double, the inertia of the load along the z-axis, in kgm2.
Note: Correctly defining the load inertia helps to improve the robot's movement accuracy, especially when
handling large objects. If ix, iy, iz are set to zero, the load will be treated as a mass. Usually, if the distance
from the center of mass of the load to the flange center point is smaller than the maximum size of the load
itself, the load inertia should be defined, as shown in the following figure:

Distance

Dimension

Load

X

15.1.12orient

Explanation
It is used to store the orientation information of the frame or space rigid body.
Variables of orient type do not support individual creation or modification and are only used as member
variables of some variables.

Definition

The RL language system uses quaternions to represent orientations, so there are a total of 4 components
expressed as follows:
q1, data type: double, the 1st component of the quaternion.
q2, data type: double, the 2nd component of the quaternion.
q3, data type: double, the 3rd component of the quaternion.
q4, data type: double, the 4th component of the quaternion.

Remarks

We usually describe the orientation of the rigid body by using the rotation matrix. The quaternion is
another way to describe orientation more concisely.
The four components of the quaternion satisfy the following relationship:�1

2 + �2
2 + �3

2 + �4
2 = 1

The rotation matrix and the quaternion can be converted to one another. It is supposed that there is a
rotation matrix R,

R =
�11 �12 �13
�21 �22 �23
�31 �32 �33

then:

�1 =
�11 + �22 + �33 + 1

2
\

�2 =
�11 − �22 − �33 + 1

2
�����2 = ���� �32 − �23

�3 =
�22 − �11 − �33 + 1

2
�����3 = ���� �13 − �31

0 15RL Commands

256 xCoreControl System User Manual

�4 =
�33 − �11 − �22 + 1

2
�����4 = ���� �21 − �12

15.1.13pos

Explanation
It is used to store location information in 3D space.
Variables of pos type do not support individual creation or modification and are only used as member
variables of some variables.

Definition

The RL language system describes three-dimensional space using the Cartesian frame, so the pos variable
has three components: x, y, and z.
X, data type: double, the X coordinate of the position.
Y, data type: double, the Y coordinate of the position.
Z, data type: double, the Z coordinate of the position.

15.1.14pose
Explanation It is used to store the position and orientation of Cartesian space.

Definition

X, data type: double, the X coordinate of the position.
Y, data type: double, the Y coordinate of the position.
Z, data type: double, the Z coordinate of the position.
Q1, data type: double, the 1st component of the quaternion.
Q2, data type: double, the 2nd component of the quaternion.
Q3, data type: double, the 3rd component of the quaternion.
Q4, data type: double, the 4th component of the quaternion.

Structure
assignment

pose pose_obj = PE:{{X,Y,Z},{Q1,Q2,Q3,Q4}};
Refer to the above definitions for parameter meanings.
Example: pose pose_obj = PE:{{100,100,100},{1,0,0,0}};

15.1.15robtarget

Explanation

It aims to store Cartesian positions and orientations of 3D space, which is used for MoveJ, MoveL,
MoveC, and MoveT commands.
Because of the multi-solvability of the inverse kinematics of the robot, the robot can arrive in many
different forms for the same target pose. In order to specify the configuration form, the robtarget variable
also contains the robot configuration data.
Variables of the robtarget type are automatically created when the motion command is inserted by
auxiliary programming. Manually changing the internal value of the variable may lead to
non-correspondence between the Pose and ConfData, and the robot cannot execute the motion command
normally.
Note: The use of Cartesian positions and orientations in robot programs is defined in the work object
frame. If the work object used in the end is not the same as that used during the initial programming, the
robot's motion will deviate from the desired path. Therefore, it shall be confirmed that the changes in work
object will not cause danger in the following two cases:
 Use the "Modify Command" function to change the wobj parameter of the command;
 The actual work object used is different from the one used in the program commands.
Improper use can result in personal injury or equipment damage!

Definition

Trans, spatial position, data type: pos, the position offset stored in the reference frame.
Rot, orientation, data type: orient, the orientation stored in the reference frame.
Conf, Robot Configuration Data, data type: confdata, to save the configuration data of the robot. Please
refer to confdata for details.
Extax, External Axis, data type: double, containing 6 members of double type, which can store the
position of up to 6 external axes. If the external axis is a rotation axis, the unit is Degree; if the external
axis is a linear axis, the unit is mm.

Example

0 15RL Commands

xCoreControl System User Manual 257

A Cartesian space pose named p1 with the position and orientation (in quaternions) as shown above is
defined. The elbow is 10°, and the angles of the Axis 1, 3, 5, and 7 are between 0 and 90°. The robot
belongs to the first group of morphological configurations (see confdata for details), and all external axes
are in zero.

Structure
assignment

robtarget rob1 = p:{{849.572593, -347.654631, 35.341636},{-0.361604, 0.078279, 0.640346, -0.673106},
-1.058584}{cfg 1,2,3,4,5,6,7,8}{EJ 1,2,3,4,5,6};
Explanation: p:{{Space Position Trans}, {Orientation Rot}, {ArmAngle}}{cfg: Robot Configuration
Data Conf}{EJ: External Axis Information Extax};

15.1.16signalxx

Explanation

signalxx type variables are used to describe I/O signals.
All signalxx type variables need to be defined in the "Input/Output" and then used in the program. Direct
declaration in the program is not supported.
signalxx currently only supports digital input and output, including the following variable types:
Variable Type Used to describe... Explanation

signaldi Digital input signal The value is True or False, and only indicates the status
signaldo Digital output signal The value is True or False and is assigned to output

signalgi Digit group input
signal

A segment of continuous physical input port is defined as a binary
number that can be converted to decimal for use in RL. It supports
up to 16 DIs to constitute the group input. Therefore, the value of
signalgi ranges from 0 to (2^n -1), with n as the number of DI points
contained in group input

signalgo Digit group output
signal

A segment of continuous physical output port is defined as a binary
number that can be converted to decimal for use in RL. It supports
up to 16 DOs to constitute the group output. Therefore, the value of
signalgo ranges from 0 to (2^n -1), with n as the number of DO
points contained in the group output

The signaldo and signalgo types contain only signal references and can be assigned using separate
commands (e.g., SetDO, SetGO, etc.).
signaldi and signalgi can be used to directly obtain the value of the corresponding input signal in the
program.

Note:
 It is not supported to define/declare variables of type signalxx in the program. If such usage occurs,

the program will report an error. Before using variables of signalxx type, please configure them in
the IO signal list.

 The scope of the signalxx variable is System, and its priority, when compared with other scope
types, is System > GLOBAL > LOCAL.

 If the variables declared in the Signal of the IO configuration interface and in the RL programs have
the same name, the variable of scope in a lower level will be selected.

Example

Example 1
//Use the state of the digital input as a criterion for judgment
IF（di1 == true）
do something…
ENDIF

Example 2
//Use the state of the digital input as a criterion for judgment. For example, if the definition group input
gi2 maps the first three bits of the 1st byte of Profinet IO, then when the values of bit0 to bit2 are 0, 1, and
1, the value of gi2 is 110 (6 after being converted to int). The same goes for group output (signalgo) as
well.
IF（gi2 == 6）

do something…

0 15RL Commands

258 xCoreControl System User Manual

endif

15.1.17speed

Explanation
It is used to define the speed of the robot and the external axes.
For users' convenience, the system presets the commonly used speed variables, which can be directly
selected through auxiliary programming. For details, please refer to Insert Command.

Definition

The speed-type variable contains 5 member variables: Joint Velocity Percentage, TCP Linear Velocity,
Orientation Velocity, External Axis Linear Velocity, and External Axis Angular Velocity.
Joint Velocity Percentage, data type: double, to specify the motion speed when the joint movement
command is applied, applicable to the commands MoveAbsJ and MoveJ, with the value ranging from 1%
to 100%.
TCP Linear Velocity, data type: double, to define the linear velocity of the TCP, with the value ranging
from 0.001 mm/s to 1000000 mm/s.
Orientation Velocity, data type: double, to define the rotation speed of the tool, with the value ranging
from 0.001 degrees/s to 1000000 degrees/s.
External Axis Linear Velocity, data type: double, to define the motion speed of the external linear axis,
with the value ranging from 0 mm/s to 1000000 mm/s.
External Axis Angular Velocity, data type: double, to define the motion speed of the external rotary axis,
with the value ranging from 0 degrees/s to 1000000 degrees/s.

Example

In the variable list:

The image above shows a definition of a speed variable named speed0, in which the joint rotation speed is
40% of the maximum allowable speed, the TCP linear speed is 300 mm/s, the space rotation speed is
100°/s, the external axis angular velocity is 1000°/s, and the external axis linear velocity is 200 mm/s.

Structure
assignment

speed speed0 = v:{40,300,100,1000,200};
Explanation: The image above shows a definition of a speed variable named speed0, in which the joint
rotation speed is 40% of the maximum allowable speed, the TCP linear speed is 300 mm/s, the space
rotation speed is 100°/s, the external axis angular velocity is 1000°/s, and the external axis linear velocity
is 200 mm/s.

Name Joint Velocity
Percentage

TCP Linear
Velocity

Orientation
Velocity

External Axis
Angular Velocity

External Axis
Linear Velocity

v5 1% 5 mm/s 200°/s 1000°/s 5000 mm/s

v10 3% 10 mm/s 200°/s 1000°/s 5000 mm/s

v25 5% 25 mm/s 200°/s 1000°/s 5000 mm/s

v30 5% 30 mm/s 200°/s 1000°/s 5000 mm/s

v40 5% 40 mm/s 200°/s 1000°/s 5000 mm/s

v50 8% 50 mm/s 200°/s 1000°/s 5000 mm/s

v60 8% 60 mm/s 200°/s 1000°/s 5000 mm/s

v80 8% 80 mm/s 200°/s 1000°/s 5000 mm/s

v100 10% 100 mm/s 200°/s 1000°/s 5000 mm/s

v150 15% 150 mm/s 200°/s 1000°/s 5000 mm/s

v200 20% 200 mm/s 200°/s 1000°/s 5000 mm/s

v300 30% 300 mm/s 200°/s 1000°/s 5000 mm/s

0 15RL Commands

xCoreControl System User Manual 259

v400 40% 400 mm/s 200°/s 1000°/s 5000 mm/s

v500 50% 500 mm/s 200°/s 1000°/s 5000 mm/s

v600 60% 600 mm/s 200°/s 1000°/s 5000 mm/s

v800 70% 800 mm/s 200°/s 1000°/s 5000 mm/s

v1000 100% 1000 mm/s 200°/s 1000°/s 5000 mm/s

v1500 100% 1500 mm/s 200°/s 1000°/s 5000 mm/s

v2000 100% 2000 mm/s 200°/s 1000°/s 5000 mm/s

V3000 100% 3000 mm/s 200°/s 1000°/s 5000 mm/s

v4000 100% 4000 mm/s 200°/s 1000°/s 5000 mm/s

v5000 100% 5000 mm/s 200°/s 1000°/s 5000 mm/s

v6000 100% 6000 mm/s 200°/s 1000°/s 5000 mm/s

v7000 100% 7000 mm/s 200°/s 1000°/s 5000 mm/s

vmax 100% infinite 200°/s 1000°/s 5000 mm/s
The system predefines some common speed variables, as shown in the following table.

Note

All space rotation speeds in the system's pre-defined speed variable are 200°/s. If there are special
requirements on the rotation speed of the end-effector of the robot, a new speed variable can be
defined for use according to the process requirements.

15.1.18tool

Explanation

The tool-type variables are used to record tool parameters, including TCP, orientation, and dynamic
parameters of the tools used by the robot.
The robot uses tools to interact with the outside world, so the tool variable will affect the motion of the
robot from the following aspects:
Only the TCP will move according to the programmed path and speed. When the robot executes a pure
spatial rotation, only TCP will remain motionless;
The motion path and speed specified during programming refer to the path and speed of the tool frame
relative to the work object frame. Therefore, replacing a well-calibrated tool or work object does not affect
the shape and speed of the path;
When using external tools, the speed of programming refers to the speed of a work object (relative to
external tools).
Note that when using the external tool, tframe in the tool-type variable will record the zero position and
orientation offset of the external tool, while tload will record the dynamic parameters of the gripper that is
installed at the end-effector of the robot for grasping work object.
The data of the tool-type variable is stored in the database. When the program is loaded, it is read by the
program editor from the database. Therefore, do not try to modify the tool-type variable directly in the
program editor, and thus the unpredictable errors will be avoided. If you need to modify the tool-type
variable, please modify it through the calibration interface. See the Calibration of the tool frame for
details.
Be sure to correctly define the dynamic parameters of the end-effector load of the robot, including the tool
itself and the two parts of the object captured by the tool. The wrong definition may lead to the following
consequences:
 The robot cannot maximize the ability to use the servo system, resulting in degraded performance;
 The accuracy of the path is reduced, and the positioning error increases;
Overloading of mechanical components results in a reduction in life or damage.

Example

Robhold, data type: boot, to define whether the tool is installed on the robot. True indicates that the tool is
installed on the robot. False indicates that the tool is not installed on the robot and an external tool is being
used. When making a jog or executing a program, only one of the robhold parameters can be True in the
tool/work object combination used at the same time. That is, if the robhold of the tool is True, the
corresponding work object robhold must be false, and vice versa; otherwise, the robot will prompt an
error, and it is impossible to make a jog or execute the corresponding program command.
Tframe, Tool Frame, data type: pose, to record the tool frame of the tool used, including:
TCP represents the offset in the x, y, and z directions relative to the robot end-effector flange frame, in
millimeters. The orientation offset of the tool frame relative to the flange frame is expressed in quaternion.
See the following figure for details:

0 15RL Commands

260 xCoreControl System User Manual

Tool frame
Flange frame

X

Y

Z

Z

Y

X

world frame

External tool

Tool frame

Tload, dynamic parameters of the tool, data type: load, to record the dynamic parameters of the tool. For
the common tool, tload describes the dynamic parameters of the entire tool. For external tools, tload
describes the dynamic parameters of the gripper used by the robot (holding the work object). For general
tools installed on the robot, the load parameters include:
The mass of the tool (weight), in kg;
The center of gravity of the tool, described in the flange frame, in millimeters (mm); the direction of the
principal axis of inertia, described in the flange frame; and
The inertia magnitude of the tool along the principal axis of inertia, in kgm2. If all inertia components are
defined as 0 kgm2, the tool is treated as a Point Mass.

Note:
When using the external tool function, the TCP and orientation are defined relative to the world frame.
If the robot is using an external tool, then the tload member is used to record the dynamic parameters of
the gripper installed on the robot. The meaning of the specific parameters remains unchanged.
Please note that the tload members only define the dynamic parameters of the gripper used by the robot
(holding the work object). The dynamic parameters of the gripped work object are not included. To ensure
that the robot performs optimally under all circumstances, you need to define two tool variables to handle
this situation:
 A tool saves all parameters of the gripper itself;
 Another tool saves all parameters of the gripper + gripped work object;
The use of different tools in the motion command would help implement the switching function with or
without load.

Structure
assignment

tool tool0 = {whether the tool is handheld,{{tool position},{tool orientation quaternion}},{mass,{center
of gravity X,center of gravity Y,center of gravity Z},{load orientation quaternion},inertia ix,inertia
iy,inertia iz}};
whether the tool is handheld: true, handheld; false, external.
Example:tool tool0 = {true,{{0,0,0},{1,0,0,0}},{0,{0,0,0},{1,0,0,0},0,0,0}};

15.1.19Trigdata

Explanation

trigdata is used to store information data about the trigger events during robot motion, including trigger
conditions and trigger actions.
The trigger condition is usually reaching a specified location on the path; the trigger action can be setting
IO, setting variables, etc.
Variables of type trigdata cannot be defined by the assignment operator and can only be defined by a
specific RL command, so the information stored in each trigdata variable depends on the Trig command as
used, for example, the TrigIO, etc.

0 15RL Commands

xCoreControl System User Manual 261

Then, it can be used by the corresponding movement commands TrigL, TrigC, TrigJ, etc.

Example

The following example shows how to use the trigdata:
Example 1
VAR trigdata gripopen;
TrigIO(gripopen,0.5,do1,true);
TrigL(p1,v500,gripopen,fine,tool1);

15.1.20wobj

Explanation

wobj is an abbreviation for Work Object. Work object refers to an object processed, handled, or transported
by a robot.
All the positions used in the motion command are defined in the work object frame (if no work object
frame is specified, it defaults to the world frame. The world frame can be seen as a wobj0). There are
several benefits in doing this:
 The location of many processing points can be obtained from the design drawing of the work object

and used directly;
 When the robot is reinstalled or the work object is moved, you only need to re-calibrate the work

object frame to reuse the previous program and avoid reprogramming.
 With a suitable sensor provided, vibrations or slight movements of the work object can be

automatically compensated.
Under normal circumstances, if you do not define a specific work object frame, the control system will
then regard the world frame as the default work object frame wobj0. However, when using external tools,
the work object frame must be defined because the programming path and speed refer to the path and speed
of the work object, rather than the tool.
Usually, the work object frame is defined relative to the user frame, but if the user does not specify a user
frame, the work object frame is defined by default relative to the world frame. For details, see the Robot's
frames.
The work object actually consists of two frames, the user frame and the work object frame. Inserting a user
frame at the upper layer of the work object frame is to support the situation where multiple identical work
objects need to be machined. For an explanation of the defining relationships of the relevant coordinates,
see the explanation of oframe in the "Definitions" section.

Definition

Robhold, to define whether the work object is mounted on the robot. True indicates that the work object is
mounted on the robot and the external tool is currently being used. False indicates that the work object is
not mounted on the robot and the normal tool is currently being used.
Ufprog, User Frame Programmed, data type: bool, to define whether the user frame is fixed or moving.
True indicates that the user frame is fixed, False indicates that the user frame is moving, e.g., to define
whether it is on an external positioner or another robot.
This value is mostly used when the robot is required to coordinate its movement with the positioner or
other robots.
Ufmec, User Frame Mechanical Unit, data type: string, the mechanical unit name is used to specify which
mechanical unit the user frame is bound to; it is useful only if ufprog is false.
Oframe, Work Object Frame, data type: pose, to store the origin and orientation of the work object frame.
uframe_id, User Frame ID, data type: int, to store the id of the user frame. The corresponding user frame
can be found by id.
When using normal tools (non-external tools), the frame definition chain is as follows: The work object
frame is defined relative to the user frame; the user frame is defined relative to the world frame.

0 15RL Commands

262 xCoreControl System User Manual

Z

Z

Z

Z
Z

Z

X

X

X

X

X

X

Y

Y
Y

Y

Y

Y Tool frame

Base frame

Work object frame

User frame

When using external tools, the frame definition chain is as follows: The work object frame is defined
relative to the user frame; the user frame is defined relative to the flange frame.

Base frame

World frame

Tool frame
Work object frane

X

Y
Z

Z

Z

Z
X

X

X

Y

Y

Y

Structure
assignment

wobj wobj0 = {Robhold, Ufprog, Ufmec, Oframe, uframe_id, { mass, {center of gravity X, center of
gravity Y, center of gravity Z}, {load orientation quaternion}, inertia ix, inertia iy, inertia iz }};
Refer to the "Definition" section of this table for parameter meanings.
Example:wobj wobj0 = {false,true,"robot",{0,0,0},{1,0,0,0},0,{0,{0,0,0},{1,0,0,0},0,0,0}};

15.1.21zone

Explanation

The zone variable is used to define how a certain motion ends, or to define the size of the turning zone
between two motion trajectories.
For the same target point of robot commands, there are two processing methods in the motion command:
 When it is processed as a stop-point, the robot will move to the target point and reach the target

point at a speed of 0 before continuing to execute the next command;
 When it is processed as a transition point, the robot will not move to the target point but will start

proceeding to the next target point at a place that is several millimeters away from such a target
point. The turning path will deviate from the programmed path. We call the transition area between
the two trajectories a turning zone. See the following figure for details:

0 15RL Commands

xCoreControl System User Manual 263

Programming target point
Turning zone

Turn area start of path

radius of turning circle

The size of the turning zone cannot exceed half of the path length. If it is exceeded, the system will
automatically reduce the turning zone to half the total path length. The use of turning zones prevents the
robot from starting and stopping frequently, significantly reducing the cycle time.

Note:
In some special cases, the turning zone will be canceled. The system will report the log "Corner Path
Failed". Possible causes are as follows
 Turning zone length too small (0.01 mm/0.00001 rad);
 At least one of the two trajectories is too short (1 mm/0.001 rad);
 The two trajectories are nearly parallel and the direction of motion is opposite;
 The two trajectories perform pure rotation with the motion axis reversed. Such that only the

end-effector axis rotates forward in the previous trajectory, and only the end-effector axis rotates
reverse in the latter trajectory.

 When a warning for "Turning Zone Canceled" is generated, the program automatically treats the
affected command target point as a stop-point.

 In addition to the special cases above, all logic commands will cancel the turning zone of the
previous motion command.

Definition

Joint space trajectories and Cartesian space trajectories define turning zones with different parameters.
The variable contains two parts: distance and percent.
Distance, size of turning zone in Cartesian space, data type: double; it is used for the commands MoveL,
MoveC, and MoveT to define the size of the turning zone for Cartesian space trajectories, that is, when the
robot moves to a point with a distance of several millimeters to the target point, it starts to move to the
next target point, in millimeters, with the value ranging from 0 to 200 mm.
Percent, turning percentage, data type: double; it is used for MoveJ and MoveAbsJ, indicating how far it is
to the target angle when starting turning. 100% represents half the value of the entire rotation angle. For
command MoveL with pure space-rotation, the parameter Percent is used instead of Distance.

Example

In the variable list:

A zone variable is defined, in which the size of the Cartesian turning zone is 100 mm and the size of the
joint space turning zone is 50%.

Structure
assignment

zone z1 = s:{Distance,Percent};
Refer to the "Definition" section of this table for parameter meanings.
Example:zone z1 = s:{1,1};

The system predefines some common turning zone variables, as shown in the following table.
Name Size of turning zone in

Cartesian space Turning percentage

fine 0 mm 0%
z0 0.3 mm 0.15%
z1 1 mm 1%
z5 5 mm 3%
z10 10 mm 5%
z15 15 mm 8%
z20 20 mm 10%

0 15RL Commands

264 xCoreControl System User Manual

z30 30 mm 15%
z40 40 mm 20%
z50 50 mm 25%
z60 60 mm 30%
z80 80 mm 40%
z100 100 mm 50%
z150 150 mm 75%
z200 200 mm 100%

15.1.22torqueinfo

Explanation It is used to describe the forces and torques applied to the robot;
It includes joint space torque information and Cartesian space torque information;

Definition

joint_torque, data type: joint space torque information;
cart_torque, data type: Cartesian space torque information;
joint_torque.measure_torque, data type: double array, information of measured force in the joint space
and the torque applied to each axis measured by the force sensor;
joint_torque.external_torque, data type: double array, information of external force in the joint space,
and information of the torque applied to each axis measured by the controller based on the robot model
and measured force;
cart_torque.m_force, data type: double array, force in all directions (xyz) in the Cartesian space;
cart_torque.m_torque, data type: double array, torque in all directions (xyz) in the Cartesian space;

Example

The following example shows how to use variable torqueinfo:
Example 1
TorqueInfo tmp_info = GetEndtoolTorque(tool1, wobj1);
//Obtain the information architecture of the torque applied to the tool at the end-effector of the robot in the
case of tool1 wobj1
…
print(tmp_info.joint_torque.measure_torque);
print(tmp_info.joint_torque.external_torque);
//Print the measured force and external force of each axis
…
print(tmp_info.cart_torque.m_torque);
//Print Cartesian space torque
…
print(tmp_info.cart_torque.m_force[1]);
print(tmp_info.cart_torque.m_torque[1]);
//Print information of force and torque in X direction

15.1.23SocketServer

Explanation

A Socket TCP server is established on the controller to listen for connections initiated by external devices
as the client. This server is only used to listen for connection requests and multiple connections are
supported. When a connection is established, a new SocketConn object is generated for communication.
Note:
 Do not create (OpenDev) and destroy (CloseDev) server resources too often as it requires time for

system resource application and release. It is recommended to keep at least a 500 ms time interval
between creating and destroying resources; otherwise, system resources will be overloaded and
cause problems.

 This command only creates a server resource object, and the server creation is not completed. The
server needs to enter the listening state via OpenDev and SocketAccept.

 The server supports multiple connections.

Definition

Ip, data type: string; the control system uses the ip parameter to match the network interface controller
(NIC) and uses the corresponding NIC for network listening. If this parameter is set to "0.0.0.0", it means
listening for the connections of all NICs. In most cases, it can be set to "0.0.0.0".
Port, data type: int, listening port. When an external client initiates a connection, specify the value of the
server port set for this purpose.
Name, data type: string, the unique identifier of the server used in the RL program. It is unique within the
project and can be shared between multiple tasks without naming conflicts.

Example

Example 1
SocketServer ss = {"192.168.0.160", 8090, "svr"};
//Only listen for NIC with ip set to 192.168.0.160
SocketConn conn = SocketAccept("svr");

Example 2
SocketServer ss = {"0.0.0.0", 8090, "svr"}; //Monitor all robot network cards
SocketConn conn = SocketAccept("svr");

0 15RL Commands

xCoreControl System User Manual 265

15.1.24SocketConn

Explanation

Socket TCP connection object, used for communication to external devices. There are two types:
 The robot, as a client, initiates a connection and communication through the object to the TCP

server of the external device.
 The robot acts as a server for communication connections to the counterpart device generated when

a connection is initiated by a TCP client of the external device. When multiple TCP client
connections are initiated by different external devices, one connection is generated for each
connection.

Definition

Ip, data type: string; when the robot is used as a client, this parameter indicates the ip of the external
device's server. When the robot is used as a server, this parameter indicates the ip of the external client
when a connection is established by the external device.
Port, data type: int, listening port. When the robot initiates a connection, the server port of the external
device should be specified.
Name, data type: string, the unique identifier of the connection used in the RL program. It is unique
within the project and can be shared between multiple tasks among connections and between connection
and server. Server names should not conflict within the project.
Cache, data type: int, size of the cache, indicating max data received that can be cached; it can be left
blank. 1 by default.
Suffix, data type: string, terminator, indicating the end of a message; it can be left blank. "\r" by default.
Attr, data type: string, connection attribute.
 "incoming": local server, connected by the opposite-end client. ip and port identify the client

information.
 "outgoing": local client, connected to the external server. ip and port identify the opposite-end

server connected.
 "" and others: unavailable connection, indicating that the connection has not been opened or

unestablished connection has been found.
State, data type: string, current communication connection status; closed: connection closed; established:
connection established and working properly.

Note:
 When used as a client, the ip and port information should be set by the user. When used as a server,

the ip and port information should be automatically obtained from the accept command. Do not
modify these two values easily after the connection is established, unless you are very clear about
the use of these two values to avoid errors in program logic and operation.

 suffix can be reset at any time and can take effect until the next read. Use this feature with caution,
as it can cause communication data errors. suffix should be set before communication and should
not be modified again.

Example

Example 1
//Server ip "192.168.0.202", port 8090, connection name "clt", cache default to 1, and suffix default to "\r"
SocketConn scnn1 = {"192.168.0.202", 8090, "clt"};

Example 2
//Server ip "192.168.0.203", port 8091, connection name "clt1", cache 2, and suffix default to "\r"
SocketConn scnn2 = {"192.168.0.203", 8091, "clt1", 2};
Example 3
//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"
SocketConn scnn3 = {"192.168.0.204", 8092, "clt2", 2, "\n"};

Example 4
//Used as server, connection established by the external device
//Server ip "192.168.0.204", port 8092, connection name "clt2", cache 2, and suffix "\n"
SocketConn conn = SocketAccept("svr1");
Print(conn.ip); //External device IP
Print(conn.port); //Port of the external device to establish the connection
Print(conn.cache); //Buffer queue for receiving messages
Print(conn.suffix); //Sending and receiving suffix

15.1.25FCBoxVol

Explanation It is used to define a spatial cuboid for position monitoring or termination conditions after force control is
enabled.

Definition

Xmax represents the coordinate value of the cuboid boundary in the positive x direction;
Xmin represents the coordinate value of the cube boundary in the negative x direction;
Ymax represents the coordinate value of the cuboid boundary in the positive y direction;
Ymin represents the coordinate value of the cube boundary in the negative y direction;

0 15RL Commands

266 xCoreControl System User Manual

Zmax represents the coordinate value of the cuboid boundary in the positive z direction;
Zmin represents the coordinate value of the cube boundary in the negative z direction;

Example

Structure
assignment

FcBoxVol fcboxvol0 = FCBV:{Xmin,Xmax,Ymin,Ymax,Zmin,Zmax};
Refer to the "Definition" section of this table for parameter meanings.
Example:FcBoxVol fcboxvol0 = FCBV:{0,1,2,3,4,5};

15.1.26FCSphereVol

Explanation It is used to define a spatial sphere for position monitoring or termination conditions after force control is
enabled.

Definition

Xc: the coordinate value of the center of the spatial sphere in the x direction;
Yc: the coordinate value of the center of the spatial sphere in the y direction;
Zc: the coordinate value of the center of the spatial sphere in the Z direction;
Radius: the spatial sphere radius;

Example

Structure
assignment

FcSphereVol fc = FCSV:{xc,yc,zc,radius};
Refer to the "Definition" section of this table for parameter meanings.
Example:FcSphereVol fc = FCSV:{1,2,3,4};

15.1.27intnum
Explanation Used as an interrupt identifier. An intnum variable can only identify one interrupt.
Definition

Example

15.2Basic variable and structure
All variable types supported by the RL command. The indivisible types, including int, double, bool,
and string are basic variables (also known as primary variables), which are the foundation of all
variable types. Combined by certain rules, the variable types are called structures.

15.2.1Composition of structure
The combination rules for structures generally combine data with physical significance abstractly.
Example:
 The structure pos combines three doubles into a position (xyz) in three-dimensional space.

0 15RL Commands

xCoreControl System User Manual 267

 The structure orient combines four doubles into a quaternion that describes the orientation.
 The structure pose combines position (pos) and orientation (orient) into a pose parameter that

describes the robot position.

15.2.2Use of structure
Structures, serving as parameters for commands, can be performed in finer ways based on the
scenarios. Its data can be modified directly via the specified RL commands.
Example 1:
Robtarget structure consists of: space position (pos), orientation (orient), configuration data
(confdata), and external axes (double array). Their names are trans (pos), rot (orient), conf (confdata),
extax (double), and users can access the structure members directly in the RL function via their
names.
robtarget rob1 = ... // variable list or user-customized Cartesian variable
rob1.trans.x + = 20 // add the x of point position to 20
// In the structure definition of trans (pos), it contains three variables of x, y, and z
// The x of the last visit to rob is therefore rob1.trans.x
print (rob1.trans) // print the position data only

Example 2:
The following is available for the wobj frame:
// Taking default wobj0 as an example
wobj0.robhold // work object handheld (bool).
wobj0.ufprog // user frame programmed (bool, rarely used).
wobj0.ufmec // user frame mechanical unit usually for plating lines and tracking (string).
wobj0.oframe // work object frame pose
wobj0.oframe.x // work object frame pose x
wobj0.oframe.y // work object frame pose y
wobj0.oframe.z // work object frame pose z
wobj0.q1 // work object frame pose quaternion
wobj0.uframe_id// work object-related user frame id

Other complex structures can also refer to this method for structure access.

15.3Function
Use of functions can simplify the code structure, improve the readability and reuse rate of code. The
user can define the program segment as a new function that needs to be executed frequently so that it
can be conveniently called in the main program at any time.

15.3.1Function definition
15.3.1.1PROC

PROC represents a function with no return value, defined as:
SCOPE PROC RoutineName()
…
…
//do something
…
…
ENDPROC
Where:
1. SCOPE is the function scope, which supports both the GLOBAL and LOCAL;
2. PROC is the defining keyword for functions with no return value;
3. RoutineName is the function name. The naming rules are the same as the variable naming rules.
For details, see the Variable naming rules.
Auxiliary programming, and PROC can be inserted in the following ways:

15.3.1.2FUNC

0 15RL Commands

268 xCoreControl System User Manual

FUNC is a function with a return value, defined as:
SCOPE FUNC RET RoutineName()
…
…
//do something
…
…
ENDFUNC
Where:
1. SCOPE is the function scope, which supports both the GLOBAL and LOCAL;
2. FUNC is the defining keyword for functions with no return value;
3. RET is the return value type;
4. RoutineName is the function name. The naming rules are the same as the variable naming rules.
For details, see the Variable naming rules.
Auxiliary programming, and FUNC can be inserted in the following ways:

15.3.1.3TRAP
TRAP is an interrupt function with no return value, defined as:
TRAP TrapName()
…
…
//do something
…
…
ENDTRAP
Where:
1. TRAP is the definition keyword for interrupt functions with no return value;
4. TrapName is the function name. The naming rules are the same as the variable naming rules. For
details, see the Variable naming rules.
Auxiliary programming, and TRAP can be inserted in the following ways:

0 15RL Commands

xCoreControl System User Manual 269

15.3.2Function call
When calling a function, enter the function name directly in the program editor, for example:
RoutineName()
Note:
 Only other GLOBAL-level functions in this project or LOCAL-level functions in this module

file can be called. Recursive calls are not supported. Cross calls between two sub-functions is
also not supported.

 Calling a function is treated as a separate program command in the compiler.
 It is not allowed to define a function in a function.

15.4Commands
15.4.1Variable type conversion
15.4.1.1ByteToStr

Explanation It is used to convert byte-type data to string-type data in a specified format.

Definition

Return value, data type: string, the converted string-type data.
ByteToStr (BitData [\Hex] | [\Okt] | [\Bin] | [\Char]);
BitData, data type: byte, the byte-type data to be converted; convert by decimal by default.
\Hex, identifier, converted in hexadecimal.
\Okt, identifier, converted in octonary.
\Bin, identifier, converted in binary.
\Char, identifier, converted according to Ascii character format.

Example

Example 1
VAR byte data1 = 122
VAR string str1
str1 = ByteToStr(data1); //”122”
str1 = ByteToStr(data1 \Hex); //”7A”
str1 = ByteToStr(data1 \Okt); //”172”
str1 = ByteToStr(data1 \Bin); //”01111010”
str1 = ByteToStr(data1 \Char); //”z”
Define byte-type variable data1 and assign it with 122, convert data1 to string-type data: 122 by decimal;
7A by hexadecimal;172 by octal; 01111010 by binary; and z by character.

15.4.1.2DecToHex
Explanation It is used to convert a decimal number to a hexadecimal number.

Definition

Return value, data type: string, the hexadecimal data obtained from the conversion, represented by 0-9,
a-f, A-F.
DecToHex(str);
str, data type: string, the decimal data to be converted, represented by 0-9.

Attention Data range from 0 to 2147483647 or 0 to 7ffffffff.

15.4.1.3DoubleToByte
Explanation It is used to convert a double-type variable or a double array to a byte array.

0 15RL Commands

270 xCoreControl System User Manual

Definition

Return value, data type: byte array, the byte array obtained from the conversion, each double data is
converted to 8 byte-type data.
DoubleToByte(dou1);
dou1, data type: double, the double-type variable to be converted.

15.4.1.4DoubleToStr
Explanation It is used to convert a double-type variable to a string.

Definition
DoubleToStr(Val, Dec);
Val1, data type: double, the double-type variable to be converted.
Dec, data type: string, the number of decimal places to be kept.

Attention The maximum number of decimal places is 15 digits.

15.4.1.5HexToDec
Explanation It is used to convert a hexadecimal number to a decimal number.

Definition
Return value, decimal Integer data obtained from the conversion, represented by 0-9.
HexToDec(str);
str, data type: string, the hexadecimal data to be converted, represented by 0-9, a-f, A-F.

Attention Data range from 0 to 2147483647 or 0 to 7ffffffff.

15.4.1.6IntToByte
Explanation It is used to convert an int-type variable or an int array to a byte array.

Definition

Return value, the byte array obtained from the conversion, each int data converted to four byte data. Data
type: byte array.
IntToByte(int1);
int1, data type: int or int array, the int-type variable or int array to be converted.

Attention Data range from -2147483647 to 2147483647.

15.4.1.7IntToStr
Explanation It is used to convert integer to string.

Definition
Return value, the string obtained from the conversion.
IntToStr(int1);
int1, data type: int, the integer to be converted.

Attention Data range from -2147483647 to 2147483647.

15.4.1.8EulerToQuaternion
Explanation It is used to convert Euler angle to quaternion.

Definition

Return value, the conversion result, 0 means successful, others mean abnormal.
EulerToQuaternion (type,A,B,C,q1,q2,q3,q4);
Type, Euler angle order type, including EULER_XYZ and EULER_ZYX.
A,B,C, the Euler angle to be converted. Data type: double
q1~q4, the quaternion obtained from the conversion. Data type: double

15.4.1.9QuaternionToEuler
Explanation It is used to convert a quaternion to an Euler angle.

Definition

Return value, the conversion result, 0 means successful, others mean abnormal.
QuaternionToEuler (type,q1,q2,q3,q4,A,B,C);
Type, Euler angle order type, including EULER_XYZ and EULER_ZYX.
q1~q4, the quaternion to be converted. Data type: double
A,B,C, the Euler angle to be converted. Data type: double

15.4.2Motion commands
15.4.2.1MoveAbsJ

Explanation

MoveAbsJ (Move Absolute Joint) is used to move the robot and the external axis to a position defined by
the angle of the axis for rapid positioning or moving the robot to a precise axis angle. All axes move
synchronously and the end-effector of the robot moves along an irregular curve. Please be aware of the
risk of collision. The tool parameter used in the MoveAbsJ instruction would not affect the end position of
the robot, but the tool parameters are still being used by the controller for dynamics calculations.

Definition MoveAbsJ (ToJointPos， Speed， Zone， Tool， [Wobj]);

0 15RL Commands

xCoreControl System User Manual 271

The parameter in [] is optional and can be omitted.
TojointPos, To Joint Position, data type: jointtarget, the target angle and position value of the robot and
the external axis.
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes
MoveAbsJ, including the translation speed of the robot end-effector, the rotation speed, and the motion
speed of the external axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The command MoveAbsJ calculates the
motion speed and the size of the turning zone using the tool's TCP data.
[Wobj], Work Object, data type: wobj, the work object used when executing this trajectory. When the tool
is installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveAbsJ (j10, v500, fine, tool1): The
robot moves along an irregular path at a velocity of v500 to the absolute joint angle as defined by j10
using tool1, with a turning zone of 0.

Example 2
MoveAbsJ (startpoint， v1000， z100， gripper， phone);
The robot moves along the irregular path to the absolute joint angle defined by the startpoint at a velocity
of v1000 in the work object frame phone by using the gripper, with a turning zone of 100 mm.

15.4.2.2MoveJ

Explanation

MoveJ (Move The Robot By Joint Motion) is used to move the robot from one point to another when the
motion trajectory of the robot end-effector is not required. All axes move synchronously and the
end-effector of the robot moves along an irregular curve. Please be aware of the risk of collision.
The biggest difference between the commands MoveJ and MoveAbsJ is that the given target point format
is different. The target point of MoveJ is the spatial pose of the tool (TCP) rather than the joint axis angle.

Example

MoveJ (ToPoint， Speed， Zone， Tool， [Wobj]);
The parameter in [] is optional and can be omitted.
ToPoint, target pose, data type: robtarget, the target position described in the Cartesian space.
Speed,Move Speed, data type: speed, to specify the motion speed of the robot when it executes MoveJ,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The command MoveJ calculates the
motion speed and the size of the turning zone using the tool's TCP data.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveJ (p30， v100， z50， tool1);
The robot moves the TCP along the irregular path to the target point defined by p30 at a velocity of v100
by using tool1, with a turning zone of 50 mm.

Example 2
MoveJ (endpoint， v500， z50， gripper， wobj2);
The robot moves the TCP along the irregular path to the target point defined by the endpoint at a velocity
of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

15.4.2.3MoveL

Explanation

It is used to move the TCP along a straight line to a given target position.
When the starting and ending orientations are different, the orientation will be rotated synchronously with
the position to the endpoint. Since the translation and rotation speeds are specified separately, the final
motion time of the MoveL command depends on the change time of orientation, position, and elbow
(whichever is longer) in order not to exceed the specified speed limit. Therefore, when performing certain
trajectories (for example, small displacements but with large changes in orientation), if the robot is
moving at a significantly slower or faster speed, check whether the rotation speed setting is reasonable.
When you need to keep the TCP stationary by only adjusting the tool orientation, you can achieve this by
specifying the starting point and endpoint for MoveL with the same position but with a different
orientation.

0 15RL Commands

272 xCoreControl System User Manual

Definition

MoveL （ToPoint， Speed， Zone， Tool， [Wobj]）;
The parameter in [] is optional and can be omitted.
ToPoint, target pose, data type: robtarget, the target position described in the Cartesian space.
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes MoveL,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveL (p10， v1000， z50， tool0);
The robot moves the TCP along the straight path to the target point defined by p10 at a velocity of v1000
by using tool0, with a turning zone of 50 mm.

Example 2
MoveL(endpoint， v500， z50， gripper， wobj2);
The robot moves the TCP along the straight path to the target point defined by the endpoint at a velocity
of v500 in the work object frame wobj2 by using the gripper, with a turning zone of 50 mm.

15.4.2.4MoveC

Explanation

MoveC (Move Circle) is used to move the TCP along the arc through the middle auxiliary point to the
given target position.

When the starting and ending orientations are different, the orientation will rotate synchronously with the
position to the end position. The orientation at the auxiliary point does not affect the arc motion process.
Since the translation and rotation speeds are specified separately, the final motion time of the MoveC
command depends on the change time of orientation, position, and elbow (whichever is longer) in order
not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small displacements
but with large changes in orientation), if the robot is moving at a significantly slower or faster speed,
check whether the rotation speed setting is reasonable.

Definition

MoveC（AuxPoint， ToPoint， Speed， Zone， Tool， [Wobj]）;
The parameter in [] is optional and can be omitted.
AuxPoint, Auxiliary Point, data type: robtarget, the position of the auxpoint described in the Cartesian
space, used to determine the size of the arc and the direction of motion. The orientation of this point does
not affect the execution of the final trajectory.
ToPoint, target pose, data type: robtarget, the target position described in the Cartesian space.
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes MoveC,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveC(p10， p20， v1000， z50， tool0);
The robot moves the TCP along the arc, passing through p10 to the target point defined by p20 at a
velocity of v1000 by using tool0, with a turning zone of 50 mm.

Example 2
MoveC (auxpoint， endpoint， v500， z50， gripper， wobj2);
The robot moves the TCP along the arc, passing through the auxpoint to the target point defined by the
endpoint at a velocity of v500 in the work object frame wobj2 by using the gripper, with a turning zone of
50 mm.

15.4.2.5MoveCF
Explanation MoveCF (Move Circle Full) is used to move and rotate the Tool Center Point (TCP) along a circular path

0 15RL Commands

xCoreControl System User Manual 273

defined by a start point and two auxiliary points at a set full-circle motion angle. The destination of the
MoveCF motion is defined by the full-circle motion angle, and the two auxiliary points are only used to
locate the space position of circular paths. During the full-circle motion, the orientation will change in the
way specified by parameters, and the orientation of auxiliary points has no effect on the orientation during
the full-circle motion.
The final motion time of MoveCF is only defined by the position variation time. Therefore, the motion
velocity is checked for reasonable setting with relatively small radius, thus avoiding excessively fast
orientation rotation.

Definition

MoveCF (AuxPoint1, AuxPoint2, RunDeg, RotType, Speed, Zone, Tool, Wobj);
The parameter in [] is optional and can be omitted.
AuxPoint, Auxiliary Point, data type: robtarget, the position of two auxiliary points described in Cartesian
space. It is used to define the position, size, and motion direction of arc, and the orientation of two
auxiliary points has no effect on the motion.
RunDeg, full-circle motion angle, data type: double, value range: -359-3600 (note the soft limit of robot
end axis), the angle of full-circle motion, used to define the circle center angle. It can be negative, namely
drawing the circle in an opposite direction.
RotType, orientation variation type, data type: char. Optional parameters (orientation variation types of
full-circle motion): "ConstPose", "RotAxis", "FixedAxis", and please choose one of the three according to
your needs:
 "ConstPose": full-circle motion of constant orientation, during which the orientation will remain

unchanged at the starting point.
 "RotAxis": full-circle motion of moving axis rotation, during which the orientation is determined by

the starting point orientation and the circle position, and the orientation changes one circle around
the center axis of the circle. Due to the large orientation variation during the motion, the angle of
starting end axis should be set reasonably, thus avoiding exceeding the soft limit during motion (the
last joint in particular).

 "FixedAxis": full-circle motion of fixed axis rotation, during which the orientation is determined by
the starting point orientation and the circle position, and the orientation changes around the center
axis of the circle but does not rotate around its own Z-axis.

Speed, Move Speed, data type: speed, to define the TCP speed when the robot executes the MoveCF. The
orientation rotation speed is related to the full-circle path length, and not defined by speed parameters.
Therefore, the parameters should be set reasonably to avoid excessively fast rotation of end axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveJ (P1, v1000, z100, tool1);
MoveCF (P2, P3, 360,“RotAxis”, v100, z50, tool1);

The starting point P1, and the auxiliary points P2 and P3 jointly define the space circular trajectory.
Taking P1->P2->P3 as the positive direction, move 360° along the circle trajectory and return to the P1.
During the motion, based on the orientation of starting point P1, rotate accordingly around the center axis
of circular trajectory.

Example 2

0 15RL Commands

274 xCoreControl System User Manual

MoveJ (P1, v1000, z100, tool1);
MoveCF (P2, P3, -330,“ConstPose”, v100, z50, tool1);
Taking P1->P2->P3 as the positive direction, move -330° along the circle trajectory and return to the P5.
Maintain the same orientation as P1 during the motion.

Example 3
MoveJ (P1, v1000, z100, tool1);
MoveCF (P3, P2, 30,“FixedAxis”, v100, z50, tool1);
Taking P1->P3->P2 as the positive direction, move 30° along the circle trajectory to the P4.
During the motion, based on the orientation of starting point P1, rotate accordingly around the center axis
of the circular trajectory but not around its own Z-axis.

15.4.2.6MoveT

Explanation

MoveT (Move trochoid) is used to move the TCP to a given target position through rotary stepping with a
trochoid passing through auxiliary points.
When the starting and ending orientations are different, the orientation will rotate synchronously with the
position to the end orientation. The orientation at the auxiliary point does not affect the spiral motion
process.
Since the translation and rotation speeds are specified separately, the final motion time of the MoveT
command depends on the change time of orientation, position, and elbow (whichever is longer) in order
not to exceed the specified speed limit. Therefore, in certain trajectories (for example, small displacements
but with large changes in orientation), if the robot is moving at a significantly slower or faster speed,
check whether the rotation speed setting is reasonable.

Definition

MoveT (AuxPoint, ToPoint, Radius, Step, Speed, Zone, Tool, [Wobj]);
The parameter in [] is optional and can be omitted.
AuxPoint, Auxiliary Point, data type: robtarget, the position of the auxpoint described in the Cartesian
space, used to determine the size of the arc and the direction of motion. The orientation of this point does
not affect the execution of the final trajectory.
ToPoint, target pose, data type: robtarget, the target position described in the Cartesian space.
Radius, cycloid radius, data type: double, radius of trochoid advance, in mm
Step, step length, data type: double, step length of trochoid advance, in mm.
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes MoveT,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
MoveL (p10, v1000,fine, tool0);
MoveT (pfuzhu, p20, 150, 50, v1000, z50, tool0);
The robot moves TCP to draw a trochoid that passes p10 in an arc at a velocity of v1000. With a trochoid
radius of 150 mm and a step of 50 mm, the TCP finally arrives at the target point defined by p20, with a
turning zone of 50 mm.

15.4.2.7MoveSP

Explanation

MoveSP (Move Spiral) is used to draw an Archimedean spiral line on the center point TCP of the tool in a
plane parallel to the work object frame xy, according to the specified initial radius, rotation increment,
total rotation angle, and rotation direction. During the motion process, the orientation changes linearly to
the specified orientation at the target point.
Note: When the MoveSP command pauses midway and continues to run, it will regenerate the path
starting from the current point and no longer continue with the previous path.

0 15RL Commands

xCoreControl System User Manual 275

Definition

MoveSP (Point, Radius, Radius_step, Angle, Direction, Speed, Zone, Tool, [Wobj]);
The parameter in [] is optional and can be omitted.
Point, target point, data type: robtarget, the orientation of Cartesian point position only used as that of the
endpoint of the spiral line.
Radius, initial radius, data type: double, the initial radius of spiral line, in mm, required to be no less than
0 mm. The center point position of the spiral line is the radius distance of the current position of TCP
moving in the negative direction of the x-axis of the work object frame.
Radius_step, rotation increment, data type: double, the rotation increment of spiral line, in mm/deg,
required to be not less than 0.0001 mm/deg.
Angle, total rotation angle, data type: double, the total rotation angle of spiral line, in deg, required to be
no less than 0.1 deg and no more than 3600 deg.
Direction, rotation direction, data type: int, 0: clockwise, 1: counterclockwise.
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes MoveSP,
including the translation speed of the robot end-effector and the rotation speed.
Zone, Turning Zone, data type: zone, to define the size of the turning zone for the current trajectory. The
spiral line does not currently support turning zones, and the system will automatically cancel the turning
zones before and after the spiral line.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; this command only supports external work objects.
The TCP motion plane is parallel to the xy plane of the work object frame.

Example

Example 1
MoveL (Start_point, v1000, fine, tool1);
MoveSP (Point, 10, 0.1, 900, 1, v100, fine, tool1);
The robot uses tool1, and TCP starts moving in a straight line Start_point from P0 at a speed of v1000.
TCP performs Archimedean spiral line motion at a speed of v100, with the center point located 10 mm in
the negative direction of the x-axis of the work object frame from Start_point, and the rotation direction is
counterclockwise when viewed from the z-axis of the work object frame. The radius increases by 0.1 mm
for each 1° of rotation and stops after a total rotation of 900°.

15.4.2.8SearchL

Explanation

SearchL (Search Liner) is used to search the position when moving the TCP along a straight line. During
the movement, the robot will monitor a digital input (DI) signal or a read-only register. When the signal
status monitored matches the trigger mode, the robot immediately reads the current position. The
command can be used when the tool fixed to the manipulator is a probe used for surface detection. Use
SearchL command to obtain the outline coordinates of the work object. The command can only be used
for motion tasks.

Definition

SearchL ([action,] [signal_type], [trigger_mode,] save_rob, target_rob, Speed, Tool ,Wobj);
The parameter in [] is optional and can be omitted.
Action, action after triggering DI, data type: keyword, blank: no stop
 \Stop: quick stop, which may cause the robot to deviate from the path, without speed limits. \PStop:

planned stop. The robot will stop on the specified path, without speed limits
signal_type, data type: keyword, blank: DI signal
 \DI: DI signal
 \Reg: register signal

0 15RL Commands

276 xCoreControl System User Manual

signal_name, data type: DI signal or register, a signal that the SearchL command triggers a specific
behavior, using a user-defined DI signal or a register created in the Communication —> Register
trigger_mode, DI signal trigger mode, data type: keyword, blank: posedge triggering by default
 \Flanks: edge triggering (posedge/negedge)
 \Posflank: posedge triggering
 \Negflank: negedge triggering
 \Highlevel: high-level triggering
 \Lowlevel: low-level triggering
For numeric registers, 0 indicates a low level and non-0 indicates a high level
save_rob, data type: robtarget, to save the point position of the position data when the robot triggers the
signal
target_rob, data type: robtarget, target point position of linear motion
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes Search,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
Wobj, Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
SearchL(di0, save_rob, target_rob, v500, tool0);
The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a straight line. If di0 jumps
to high during the motion, the robot's coordinate information at the time of the signal jump is recorded in
save_rob.

Example 2
SearchL(\PStop, di0, \Lowlevel, save_rob, target_rob, v500, tool0);
The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a straight line. If di0 jumps
to low during the motion, the robot immediately has a planned stop and the robot's coordinate information
at the time of detecting to be low is recorded in save_rob.

Example 3
SearchL(\PStop, \Reg, register0, save_rob, target_rob, v500, tool0, wobj1);
The robot moves the TCP towards the target_rob in a straight line at a velocity of v500 in wobj1 by using
the tool0. If register0 changes from 0 to non-0 during the motion, the robot immediately has a planned
stop and the robot's frame information is recorded in save_rob.

15.4.2.9SearchC

Explanation

SearchC (Search Circle) is used to search for a position when moving the TCP along a circle.
During the movement, the robot will monitor a digital input (DI) signal or a read-only register. When the
signal status monitored matches the trigger mode, the robot immediately reads the current position.
The command can be used when the tool fixed to the manipulator is a probe used for surface detection.
Use SearchC command to obtain the outline coordinates of the work object. The command can only be
used for motion tasks.

Definition

SearchC ([action,] di, [trigger_mode,] save_rob, aux_rob, target_rob, Speed, Tool [,Wobj]);
The parameter in [] is optional and can be omitted.
Action, action after triggering DI, data type: keyword, blank: no stop
 \Stop: quick stop, which may cause the robot to deviate from the path. But the robot stops quickly.

Only available when the speed is below v100
 \PStop: planned stop. The robot will stop on the specified path, without speed limits
signal_type, data type: keyword, blank: DI signal
 \DI: DI signal
 \Reg: register signal
signal_name, data type: DI signal or register, a signal that the SearchC command triggers a specific
behavior, using a user-defined DI signal or a register created in the Communication —> Register.
trigger_mode, DI signal trigger mode, data type: keyword, blank: posedge triggering by default
 \Flanks: edge triggering (posedge/negedge)
 \Posflank: posedge triggering
 \Negflank: negedge triggering
 \Highlevel: high-level triggering
 \Lowlevel: low-level triggering
For numeric registers, 0 indicates a low level and non-0 indicates a high level
save_rob, data type: robtarget, to save the point position of the position data when the robot triggers the
signal

0 15RL Commands

xCoreControl System User Manual 277

aux_rob, data type: robtarget, auxiliary point of circular motion
target_rob, data type: robtarget, target point position of circular motion
Speed, Move Speed, data type: speed, to specify the motion speed of the robot when it executes Search,
including the translation speed of the robot end-effector, the rotation speed, and the motion speed of the
external axis.
Tool, data type: tool, the tool used when executing the trajectory. The speed in the command refers to the
tool’s TCP speed and rotation speed.
[Wobj], Work Object, data type: wobj, the work object is used to execute the trajectory. When the tool is
installed on the robot, this parameter can be ignored; when using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of the turning zone by using the data
saved in wobj.

Example

Example 1
SearchC (di0, save_rob, aux_rob, target_rob, v500, tool0);
The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a circle after passing
auxiliary point aux_rob. If di0 jumps to high during the motion, the robot's coordinate information at the
time of the signal jump is recorded in save_rob.

Example 2
SearchC (\PStop, di0, \Flanks, save_rob, target_rob, v500, tool0);
The robot uses tool0 and TCP moves at a speed of v500 towards target_rob in a straight line after passing
auxiliary point aux_rob. If di0 jumps from low to high or from high to low during the motion, the robot
immediately has a planned stop and the robot's coordinate information at the time of the signal jump is
recorded in save_rob.

Example 3
SearchC (\Reg, register0, \Flanks, save_rob, target_rob, v5, tool0);
The robot moves TCP towards the target_rob in a straight line through passing aux_rob at a velocity of v5.
If register0 changes from 0 to non-0 during the motion, the robot immediately has a planned stop and the
robot's frame information at the time of the signal jump is recorded in save_rob.

15.4.3Trigger command
15.4.3.1TrigIO

Explanation TriggIO is used to set a trigdata as an output I/O trigger during the motion. Digital output DO and digital
group output GO are supported.

Definition

TrigIO (TrigData,Distance,RefStart,SignalName,Value);
TrigData, data type: trigdata, a variable used to store the trigger data set by this TrigIO;
Distance, data type: double, non-negative (negative numbers are treated as 0), to define the location offset
of the trigger event on the path. Whether the location offset is relative to the path start or end is defined by
RefStart;
RefStart, data type: bool, to define whether the trigger position is relative to the start point (true) or the
end point (false);
SignalName, data type: signaldo or signalgo, the signal name of the digital output or digital group output
associated with this defined IO event, which must be an output signal that has been set correctly; //add
Value, data type: bool or int, to define the target value of the output signal when an IO event is triggered.
The data type of the given value should match the SignalName type.

Example Refer to the TrigL example

15.4.3.2TrigReg

Explanation TrigReg is used to set a trigdata to modify the register value during the motion; register types supported
include int16, bool, float, and bit.

Definition

TrigReg (TrigData,Distance,RefStart,RegName,Value);
TrigData, data type: trigdata, a variable used to store the trigger data set by this TrigIReg;
Distance, data type: double, non-negative (negative numbers are treated as 0), to define the location offset
of the trigger event on the path. Whether the location offset is relative to the path start or end is defined by
RefStart;
RefStart, data type: bool, to define whether the trigger position is relative to the start point (true) or the
end point (false);
RegName, the register name, and the data type is not available. Note: Registers can not be created in RL.
The user needs to create new registers through "Robot -> Communication -> Register";
Value, data type: int16, bool, float, or bit, to define the target value of the register when a register
modification event is triggered. The data type of the given value should match the RegName type; if the
value specified by the user mismatches with the register type, the type will be transformed automatically;

Example Refer to the TrigL example

0 15RL Commands

278 xCoreControl System User Manual

15.4.3.3TrigVar

Explanation TrigVar is used to set a trigdata to modify the RL variables during the motion, and the type of RL
variables includes bool, byte, int, and double.

Definition

TrigVar (TrigData,Distance,RefStart,VarName,Value);
TrigData, data type: trigdata, a variable used to store the trigger data set by this TrigVar;
Distance, data type: double, non-negative (negative numbers are treated as 0), to define the location offset
of the trigger event on the path. Whether the location offset is relative to the path start or end is defined by
RefStart;
RefStart, data type: bool, to define whether the trigger position is relative to the start point (true) or the
end point (false);
VarName, name of the RL variable to be modified, without any data type;
Value, data type: bool, byte, int, and double, used to define the target value of the RL variable when a RL
variable modification event is triggered. The data type of the given value should match the VarName type,
and if the value specified by the user mismatches with the RL variable type, the type will be transformed
automatically.

Example Refer to the TrigL example

15.4.3.4TrigL

Explanation
Like MoveL, TrigL is a command to perform linear motion in space. The difference is that TrigL can
perform predefined operations at several specified positions during the motion; the two commands are the
same in the number and meaning of other parameters.

Definition

TrigL (ToPoint,Speed,Trigger,Zone,Tool,[Wobj]);
ToPoint, target pose, data type: robtarget, the target pose described in the Cartesian space;
Speed, type: speed, to specify the motion speed of the robot when it executes MoveL, including the
translation speed of the robot end-effector, the rotation speed, and the motion speed of the external axis;
Trigger, trigger condition and action, data type: trigdata; trigdata must be the trigdata processed with
TrigX command; otherwise, the compiler will report an error when coming to this line.
Zone, turning zone, data type: zone, to define the size of turning zone for the current trajectory;
Tool, type: tool;
[Wobj], work object, type: wobj, the work object used when executing this trajectory. When the tool is
installed on the robot, this parameter can be ignored. When using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of turning zone by using the data
stored in wobj.
Example 1
VAR trigdata tc1
VAR trigdata tc2
VAR trigdata tc3
...
//Set tc1, tc2, tc3
TrigIO (tc1,0,true,do2,true);
TrigIO (tc2,60,false,do2,false);
TrigVar (tc2,60,false,Bool0,false); //Bool0 is a RL variable in bool type
TrigReg (tc3, 80, true, r0, false); //r0 is a bool type register
...
//Motion
MoveL (p1,v500,z50,tool1);
TrigL (p2,v500,tc1,z50,tool1);
TrigL (p3,v500,tc2,fine,tool1);
TrigL (p4,v500,tc3,fine,tool1);

15.4.3.5TrigC

0 15RL Commands

xCoreControl System User Manual 279

Explanation
TriggC is similar to MoveC in that it is a command to execute circular motion. The difference is that
TriggC can perform predefined operations at several specified positions during the motion; the two
commands are the same in the number and meaning of other parameters.

Definition

TrigC (AuxPoint,ToPoint,Speed,Trigger,Zone,Tool,[Wobj]);
AuxPoint, Auxiliary Point, data type: robtarget, the target pose described in the Cartesian space;
ToPoint, target pose, data type: robtarget, the target pose described in the Cartesian space;
Speed, type: speed, to specify the motion speed of the robot when it executes MoveL, including the
translation speed of the robot end-effector, the rotation speed, and the motion speed of the external axis;
Trigger, trigger condition and action, data type: trigdata; trigdata must be the trigdata processed with
TrigX command; otherwise, the compiler will report an error when coming to this line.
Zone, turning zone, data type: zone, to define the size of turning zone for the current trajectory;
Tool, type: tool;
[Wobj], work object, type: wobj, the work object used when executing this trajectory. When the tool is
installed on the robot, this parameter can be ignored. When using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of turning zone by using the data
stored in wobj.

Example

Example 1
VAR trigdata tc1
...
//Set tc1
TrigIO (tc1,0,true,do2,true);
...
//Motion
MoveL (p1,v500,z50,tool1);
TrigC (p2,p3,v500,tc1,fine,tool1);

15.4.3.6TrigJ

Explanation

The forms of TrigJ and MoveJ are exactly identical, and both are commands that execute joint space
motion. The difference is that TrigJ can execute predefined operations at several specified positions during
the motion, with no difference in the number and meaning of other parameters.
When the robot executes a MoveJ command, the trajectory of tcp is usually an arc. When triggering the
Trigger signal, the distance of TrigJ is calculated as per the arc traveled by the tcp, see the example for
details.

Definition

TrigJ (ToPoint,Speed,Trigger,Zone,Tool,[Wobj]);
ToPoint, target pose, data type: robtarget, the target pose described in the Cartesian space;
Speed, data type: speed, to specify the motion speed of the robot when it executes MoveL, including the
robot joint speed, translation speed of the robot end-effector, rotation speed, and motion speed of the
external axis;
Trigger, trigger condition and action, data type: trigdata; trigdata must be the trigdata processed with
TrigX command; otherwise, the compiler will report an error when coming to this line;
Zone, turning zone, data type: zone, to define the size of turning zone for the current trajectory;
Tool, type: tool;
[Wobj], work object, type: wobj, the work object used when executing this trajectory. When the tool is
installed on the robot, this parameter can be ignored. When using external tools, this parameter must be
specified, and the robot will calculate the motion speed and the size of turning zone by using the data
stored in wobj.

Example

Example 1
VAR trigdata tc1;
VAR trigdata tc2;

VAR trigdata tc3;
...
//Set tc1, tc2, tc3
TrigIO (tc1,0,true,do2,true);

0 15RL Commands

280 xCoreControl System User Manual

TrigIO (tc2,60,false,do2,false);
TrigReg (tc3, 80, true, r0, false); //r0 is a bool type register
...
//Motion
MoveJ (p1,v500,z50,tool1);
TrigJ (p2,v500,tc1,z50,tool1);
TrigJ (p3,v500,tc2,fine,tool1);
TrigJ (p4,v500,tc3,fine,tool1);

15.4.4Force control commands
15.4.4.1CalibSensorError

Explanation Calibrate the torque sensor zero
Definition No parameters, and can be used directly.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
CalibSensorError();

Attention

 The torque sensor zero calibration is only applicable to collaborative robots, which is unavailable
for industrial robots.

 This interface can be called for calibration when the manipulator is in a static state at any pose.
However, a correct load must be set, otherwise an error may be reported.

15.4.4.2FcInit

Explanation It is used for initialization before the force control is enabled, such as setting the work object, tool, and
force control frame.

Definition

FcInit (Tool, Wobj, ForceFrameRef);
Tool, data type: pose, the tool used for force control. The origin of the force control frame is the TCP of
the tool (the orientation is the same as the orientation of the frame selected in the third parameter). Note
that all adapter flanges used need to be included in the definition of the tool.
Wobj, data type: pose, the work objects used for force control. Many force control functions are defined
relative to the work object frame, such as the orientation of the force control frame, the search mode, and
termination conditions. This parameter is Wobj0 by default.
ForceFrameRef, data type: int, to define the frame to which the force control frame is relative. It
supports:
 0: world frame
 1: work object frame
 2: Tool frame
 3: Base frame
The default value is the world frame (0).

Example

Example 1
FcInit (Tool1, Wobj0, 0);
Initialize force control, and define the tool1 and work object wobj0 used when force control is enabled,
and the definition of force control frame in relative to the world frame.

Attention FcInit is not allowed to be called again between FcInit and FcStop.

15.4.4.3SetControlType
Explanation It is used to set the impedance control type.

Definition

SetControlType (ctrl_type);
ctrl_type, data type: int, impedance control type. It supports:
 0: joint impedance
 1: Cartesian impedance

0 15RL Commands

xCoreControl System User Manual 281

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType(0);
Set joint impedance as the impedance control mode after executing FcInit.

Attention

The impedance type can only be set after executing FcInit and before executing FcStart.
After setting the impedance control type, it should be operated with proper impedance stiffness. If the
setting control type is joint impedance, users should proceed to use the SetJntCtrlStiffVec interface to set
the joint impedance stiffness. If only Cartesian impedance stiffness is set, the Cartesian stiffness setting
does not take effect when the robot moves. As it is both joint impedance and Cartesian impedance
stiffness, only the joint impedance stiffness setting takes effect when the robot moves, with both joint
impedance and Cartesian impedance stiffness set to 0 by default.

15.4.4.4SetCartNsStiff
Explanation It is used to set the null-space impedance stiffness

Definition SetCartNsStiff(cart_ns_stiff);
cart_ns_stiff, data type: double, Cartesian null-space impedance stiffness, range: 0−4, in N.m/rad.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType(1);
SetCartNSStiff(2);
Set Cartesian impedance as the impedance control mode and the null-space impedance stiffness as 2.

Attention This interface can only be called after executing SetControlType 1, that is, setting Cartesian impedance as
the impedance control mode. If not, the null-space impedance parameters will not be set successfully.

15.4.4.5SetJntCtrlStiffVec
Explanation It is used to set the joint impedance stiffness

Definition

SetJntCtrlStiffVec(jnt1_stiff，jnt2_stiff，jnt3_stiff，jnt4_stiff，jnt5_stiff， jnt6_stiff，jnt7_stiff);
Jnt1_stiff, data type: double, impedance stiffness of joint 1, in N.m/rad.
Jnt2_stiff, data type: double, impedance stiffness of joint 2, in N.m/rad.
Jnt3_stiff, data type: double, impedance stiffness of joint 3, in N.m/rad.
Jnt4_stiff, data type: double, impedance stiffness of joint 4, in N.m/rad.
Jnt5_stiff, data type: double, impedance stiffness of joint 5, in N.m/rad.
Jnt6_stiff, data type: double, impedance stiffness of joint 6, in N.m/rad.
Jnt7_stiff, data type: double, impedance stiffness of joint 7, in N.m/rad. //When setting up a 6-axis robot,
this parameter defaults to 0.

Example

Example 1
FcInit(Tool1, Wobj0, 0);
SetControlType(0);
SetJntCtrlStiffVec(1500,1500, 1500,1500,100,100,100);
Set the joint impedance as the impedance control mode and the impedance stiffness of joints 1−7 as 1500,
1500, 1500, 1500, 100, 100, 100, respectively.

Attention This interface can only be called after executing SetControlType 0, that is, setting joint impedance as the
impedance control mode. If not, the joint impedance parameters will not be set successfully.

Maximum stiffness of each axis of the collaborative model (N.m/rad)
J1 J2 J3 J4 J5 J6 J7

ER3P 6000 6000 6000 1000 1000 1000 1000
ER7P 6000 6000 6000 1000 1000 1000 1000
ER3 3000 3000 3000 300 300 300
ER7 3000 3000 3000 300 300 300
SR3 3000 3000 3000 300 300 300
SR4 3000 3000 3000 300 300 300
SR5 3000 3000 3000 300 300 300
CR7 6000 6000 6000 1000 1000 1000
CR12 20000 20000 20000 3000 2500 2500
CR17 20000 20000 20000 2500 2500

CR17/25 20000 20000 20000 2500 2500
CR18 20000 20000 20000 3000 2500 2500
CR20 20000 20000 20000 3000 2500 2500
CR25 20000 20000 20000 2500 2500

15.4.4.6SetCartCtrlStiffVec
Explanation It is used to set the Cartesian impedance stiffness

Definition
SetCartCtrlStiffVec trans（stiff_x，trans_stiff_y，trans_stiff_z，rot_stiff_x，rot_stiff_y，rot_stiff_z）;
trans_stiff_x, data type: double, Cartesian impedance force stiffness in the X-direction, in N/m.
trans_stiff_y, data type: double, Cartesian impedance force stiffness in the Y-direction, in N/m.

0 15RL Commands

282 xCoreControl System User Manual

trans_stiff_z, data type: double, Cartesian impedance force stiffness in the Z-direction, in N/m.
rot_stiff_x, data type: double, Cartesian impedance torque stiffness in the X-direction, in N.m/rad.
rot_stiff_y, data type: double, Cartesian impedance torque stiffness in the Y-direction, in N.m/rad.
rot_stiff_z, data type: double, Cartesian impedance torque stiffness in the Z-direction, in N.m/rad.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType (1);
SetCartCtrlStiffVec(1000，1000，1000，100，100，100);
Set Cartesian impedance as the impedance control mode and the impedance force stiffness in X/Y/Z
direction as 1000, and the impedance torque stiffness as 100.

Attention This interface can only be called after executing SetControlType 1, that is, setting Cartesian impedance as
the impedance control mode. If not, the Cartesian impedance parameters will not be set successfully.

Maximum stiffness of each axis of the collaborative model, in N/m and N.m/rad
trans_x trans_y Trans_z rot_x rot_y rot_z

ER3P 6000 6000 6000 1000 1000 1000
ER7P 6000 6000 6000 1000 1000 1000
ER3 3000 3000 3000 300 300 300
ER7 3000 3000 3000 300 300 300
SR3 3000 3000 3000 300 300 300
SR4 3000 3000 3000 300 300 300
SR5 3000 3000 3000 300 300 300
CR7 6000 6000 6000 1000 1000 1000
CR12 18000 18000 18000 2500 2500 2500

CR17/25 18000 18000 18000 2500 2500 2500
CR18 18000 18000 18000 2500 2500 2500
CR20 18000 18000 18000 2500 2500 2500

15.4.4.7SetJntTrqDes
Explanation Set the desired torque of the joint

Definition

SetJntTrqDes (tau_d1,tau_d2,tau_d3,tau_d4,tau_d5,tau_d6,tau_d7);
tau_d1, data type: double, the desired torque of joint 1, range: -30−30, in N.m.
tau_d2, data type: double, the desired torque of joint 2, range: -30−30, in N.m.
tau_d3, data type: double, the desired torque of joint 3, range: -30−30, in N.m.
tau_d4, data type: double, the desired torque of joint 4, range: -30−30, in N.m.
tau_d5, data type: double, the desired torque of joint 5, range: -30−30, in N.m.
tau_d6, data type: double, the desired torque of joint 6, range: -30−30, in N.m.
tau_d7, data type: double, the desired torque of joint 7, range: -30−30, in N.m. //When setting up a 6-axis
robot, this parameter defaults to 0.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType (0);
FcStart();
SetJntTrqDes (5,5,5,5,5,5,5);
FcStop();
Set the desired torque of all joints to 5 N.m.

Attention This interface can only be called after executing FcStart and before executing FcStop. If not, the desired
joint torque will not be set successfully.

15.4.4.8SetCartForceDes
Explanation Set the desired Cartesian force/torque

Definition

SetCartForceDes (force_x，force_y，force_z，torque_x，torque_y，torque_z);
force_x, data type: double, the desired Cartesian force in the X-direction, range: -60−60, in N.
force_y, data type: double, the desired Cartesian force in the Y-direction, range: -60−60, in N.
force_z, data type: double, the desired Cartesian force in the Z-direction, range: -60−60, in N.
torque_x, data type: double, the desired Cartesian torque in the X-direction, range: -10−10, in N.m.
torque_y, data type: double, the desired Cartesian torque in the Y-direction, range: -10−10, in N.m.
torque_z, data type: double, the desired Cartesian torque in the Z-direction, range: -10−10, in N.m.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType(1);
FcStart();
SetCartForceDes(0,0,5,0,0,0);
FcStop();
Set the desired Cartesian force/torque. Set the desired force in the z-direction to 5 N.

0 15RL Commands

xCoreControl System User Manual 283

Attention This interface can only be called after executing FcStart and before executing FcStop. If not, the desired
Cartesian force/torque will not be set successfully.

15.4.4.9SetSineOverlay
Explanation Set the sine overlay rotating around a single axis

Definition

SetSineOverlay(line_dir, amplify, frequncy, phase, bias);
line_dir, data type: int, overlay reference axis. It supports:
 0: x-axis as the reference direction
 1: y-axis as the reference direction
 2: z-axis as the reference direction
Amplify, data type: double, overlay amplitude, in N.m.
Frequncy, data type: double, overlay frequency, in Hz.
Phase, data type: double, overlay phase, range: −3.14 to 3.14, in rad.
Bias, data type: double, overlay offset, range: −10 to 10, in N.m.

Example

Example 1
FcInit(Tool1, Wobj0, 0);
SetControlType(1);
SetSineOverlay(0，10，5，3.14，2);
Set rotary overlay around x-axis (0), amplitude: 10 N.m, frequency: 5 Hz, phase: 3.14 rad, and offset: 2
N.m.

Attention
This interface can only be called after executing SetControlType 1, that is, setting Cartesian impedance as
the impedance control mode, and before executing StartOverlay. If not, the sine overlay will not be set
successfully.

Upper limit of collaborative model parameters:
Maximum overlay

amplitude
Maximum overlay

frequency
ER3P 10 5
ER7P 10 5
ER3 10 5
ER7 10 5
SR3 5 5
SR3-C 5 5
SR3-A 5 5
SR4 5 5
SR4-C 5 5
CR7 10 5
CR12 10 5

CR17/25 10 5
CR18 10 5
CR20 10 5

15.4.4.10SetLissajousOverlay
Explanation Set the Lissajous overlay within a plane

Definition

SetLissajousOverlay(plane, amplify_one, frequncy_one, amplify_two, frequncy_two, phase_diff);
Plane, data type: int, overlay reference plane. It supports:
 0: XY plane as the reference plane
 1: XZ plane as the reference plane
 2: YZ plane as the reference plane
amplify_one, data type: double, amplitude of overlay in Direction 1, range: −20 to 20, in N.m.
frequncy_one, data type: double, frequency of overlay in Direction 1, range: 0−5, in Hz.
amplify_two, data type: double, amplitude of overlay in Direction 2, range: −20 to 20, in N.m.
frequncy_two, data type: double, frequency of overlay in Direction 2, range: 0−5, in Hz.
phase_diff, data type: double, phase deviation between overlays in two directions, range: −3.14 to 3.14, in
rad.

Example

Example 1
FcInit (Tool1，Wobj0，0);
SetControlType (1);
SetLissajousOverlay (0，5，2.5，10，5，3.14);
Set Lissajous overlay within the xy plane (0). The amplitude and frequency are 5 N.m and 2.5 Hz in the
x-direction, and 10 N.m and 5 Hz in the y-direction. The phase deviation between the y-direction and
x-direction is 3.14 rad.

Attention This interface can only be called after executing SetControlType 1, that is, setting Cartesian impedance as
the impedance control mode, and before executing StartOverlay. If not, the overlay will not be set

0 15RL Commands

284 xCoreControl System User Manual

successfully.

15.4.4.11SetLoad
Explanation Set the load information used by the force control module.

Definition

SetLoad(m,rx,ry,rz,Ixx,Iyy,Izz);
M, data type: double, load mass, in kg, range: 0−25;
Rx, data type: double, the position of the load's center of mass on the x-axis of the flange frame, in mm,
range: (-300, 300);
Ry, data type: double, the position of the load's center of mass on the y-axis of the flange frame, in mm,
range: (-300, 300);
Rz, data type: double, the position of the load's center of mass on the z-axis of the flange frame, in mm,
range: (-300, 300);
Ixx, data type: double, the inertia of the load's center of mass along the x-axis, in kg*mm^2, range: (0,
100000);
Iyy, data type: double, the inertia of the load's center of mass along the y-axis, in kg*mm^2, range: (0,
100000);
Izz, data type: double, the inertia of the load's center of mass along the z-axis, in kg*mm^2, range: (0,
100000);

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
SetLoad (1,0,0,10,0.001,0.001,0.0001);
Set the end-effector load as follows: the mass is 1 kg, the component of the center of mass in the flange
frame is 0, 0, and 10 mm, and the inertia of the load relative to the load's center of mass frame is 0.001
kg*mm^2, 0.001 kg*mm^2, and 0.0001 kg*mm^2, respectively.

Attention The interface can only be called after executing FcStart. If not, the load parameters will not be set
successfully.

15.4.4.12FcStart
Explanation It is used to enable force control. It switches the robot from pure position control to force control
Definition No parameters, and can be used directly.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
Enable force control through FcStart after executing FcInit. The robot is now in force control mode.

Attention
This interface is called after executing FcInit. Before calling the instruction, the robot mechanical zero,
force sensor zero, and load information should be set correctly, and the body parameters are identified
correctly. Otherwise, the effectiveness of the force control function will be affected or even disabled.

15.4.4.13FcStop

Explanation It is used to stop force control. The robot will switch from force control to position control. Executing this
command will automatically stop all overlays internally.

Definition No parameters, and can be used directly.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
FcStop();
It is used to stop force control. The robot will switch from force control to position control. Executing this
instruction clears all force control states.

Attention
This interface is called after executing FcStart, and it will clear the force control state, such as force
control load information, impedance parameters, overlay, and desired force. To enable force control again,
FcInit should be executed again.

15.4.4.14StartOverlay
Explanation It is used to enable the overlay set before
Definition No parameters, and can be used directly.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType (1);
SetSineOverlay (0，10，5，3.14，2);
SetLissajousOverlay (0，5，2.5，10，5，3.14);
FcStart();
StartOverlay();

0 15RL Commands

xCoreControl System User Manual 285

Start the superposition of overlays set before. In the example, these overlays include the sine overlay
around the x-axis and the Lissajous overlay within xy plane.

Attention The interface can only be called after executing FcStart. If not, the sine overlay will not be set
successfully.

15.4.4.15PauseOverlay
Explanation Pause the overlay
Definition No parameters, and can be used directly

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType (1);
SetSineOverlay (0，10，5，3.14，2);
FcStart();
StartOverlay();
PauseOverlay();
Pause the overlay

Attention The interface can only be called after executing StartOverlay.

15.4.4.16RestartOverlay
Explanation Restart the paused overlays
Definition No parameters, and can be used directly.

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType(1);
SetSineOverlay(0，10，5，3.14，2);
FcStart();
StartOverlay();
PauseOverlay();
RestartOverlay();
Restart the overlays

Attention The interface can only be called after executing PauseOverlay. This interface is used in conjunction with
PauseOverlay to restart paused overlays.

15.4.4.17StopOverlay
Explanation Stop the overlays
Definition No parameters, and can be used directly

Example

Example 1
FcInit (Tool1, Wobj0, 0);
SetControlType(1);
SetSineOverlay(0，10，5，3.14，2);
FcStart();
StartOverlay();
StopOverlay();
Stop the overlays.

Attention The calling of the interface is of practical value can only after executing StartOverlay.

15.4.4.18FcCondForce
Explanation It is used to define termination conditions related to contact force

Definition

FcCondForce(xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut);
Xmin, to define the lower limit of the force limit in the X-direction. It indicates the maximum value in the
negative X-direction if the value is negative. The unit is N and the default value is negative infinity. Data
type: double
Xmax, to define the upper limit of the force limit in the X-direction. It indicates the minimum value in the
negative X direction if the value is negative. The unit is N and the default value is positive infinity. Data
type: double
Ymin, to define the lower limit of the force limit in the Y-direction. It indicates the maximum value in the
negative Y direction if the value is negative. The unit is N and the default value is negative infinity. Data
type: double
Ymax, to define the upper limit of the force limit in the Y-direction. It indicates the minimum value in the
negative Y direction if the value is negative. The unit is N and the default value is positive infinity. Data
type: double
Zmin, to define the lower limit of the force limit in the Z-direction. It indicates the maximum value in the
negative Z direction if the value is negative. The unit is N and the default value is negative infinity. Data

0 15RL Commands

286 xCoreControl System User Manual

type: double
Zmax, to define the upper limit of the force limit in the Z-direction. It indicates the minimum value in the
negative Z direction if the value is negative. The unit is N and the default value is positive infinity. Data
type: double
IsInside, to define whether the internal/external restriction condition is true. Data type: bool
TimeOut, to define the timeout period in seconds, range: 1−600. Data type: double

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
FcCondForce (-100，100，-100，100，-100，100，true，60);
Define a termination condition. The condition is true when the contact force is within plus or minus 100 N
in the x/y/z-axis direction of the force control frame, and terminates when it exceeds 100 N. The timeout
period is 60 seconds.

Attention This interface can only be called after executing FcStart and before executing FcStop. If not, the
termination conditions of the contact force will not be set successfully.

15.4.4.19FcCondPosBox
Explanation It is used to define termination conditions related to contact location

Definition

FcCondPosBox(SupvFrame, Box, IsInside, Timeout);
SupvFrame, to select which coordinate system is defined relative to the monitored spatial body. The
frame is derived by converting a work object frame onto a frame. The conversion of the frame is defined
by pose. By default, pose0 is used. That is, the work object frame is used without using any conversion.
Data type: pose.
Box, to define a cuboid. Data type: fcboxvol
IsInside, to define whether the internal/external restriction condition is true. Data type: bool
TimeOut, to define the timeout period in seconds, range: 1−600. Data type: double

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
VAR fcboxvol box1 = fcbv:{-100.0, 100.0, -200.0, 200.0, -300.0, 300.0};
VAR pose pose1 = pe:{{0, 0, 0},{1, 0, 0, 0}};
FCCondPosBox (pose1, box1, false, 60);
Define a termination condition. The termination condition is triggered when the robot TCP enters the
defined cuboid or waits more than 60 seconds.

Attention This interface can only be called after executing FcStart and before executing FcStop. If not, the
termination conditions of the cuboid location will not be set successfully.

15.4.4.20FcCondTorque
Explanation It is used to define termination conditions related to contact torque.

Definition

FcCondTorque(xmin, xmax, ymin, ymax, zmin, zmax, IsInside, TimeOut);
Xmin, to define the lower limit of the torque limit in the X-direction. It indicates the maximum value in
the negative X-direction if the value is negative. The unit is N.m and the default value is negative infinity.
Data type: double
Xmax, to define the upper limit of the torque limit in the X-direction. It indicates the minimum value in
the negative X-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double
Ymin, to define the lower limit of the torque limit in the Y-direction. It indicates the maximum value in
the negative Y-direction if the value is negative. The unit is N.m and the default value is negative infinity.
Data type: double
Ymax, to define the upper limit of the torque limit in the Y-direction. It indicates the minimum value in
the negative Y-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double
Zmin, to define the lower limit of the torque limit in the Z-direction. It indicates the maximum value in
the negative Z-direction if the value is negative. The unit is N.m and the default value is negative infinity.
Data type: double
Zmax, to define the upper limit of the torque limit in the Z-direction. It indicates the minimum value in
the negative Z-direction if the value is negative. The unit is N.m and the default value is positive infinity.
Data type: double
IsInside, to define whether the internal/external restriction condition is true. Data type: bool
TimeOut, to define the timeout period in seconds, range: 1−600. Data type: double

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
FcCondTorque (-10，10，-10，10，-10，10，true，60);
Define a termination condition. When the contact torque is greater than 10 N.m in any direction of the

0 15RL Commands

xCoreControl System User Manual 287

force control frame, or the time exceeds 60s, the termination condition is triggered.

Attention This interface can only be called after executing FcStart and before executing FcStop. If not, the
termination conditions of the contact torque will not be set successfully.

15.4.4.21FcCondWaitWhile

Explanation It is used to activate the previously defined termination conditions and wait until these conditions become
False or timeout in the current line.

Definition No parameters, and can be used directly

Example

Example 1
FcInit (Tool1, Wobj0, 0);
FcStart();
FcCondTorque (-10，10，-10，10，-10，10，true，60);
FcCondForce (-100，100，-100，100，-100，100，true，60);
FcCondWaitWhile();
Activate the termination conditions. The program blocks at the current position and waits for the
termination conditions to be triggered.

Attention It can be used after the force control termination conditions are defined.

15.4.4.22FcMonitor

Explanation

It is used to enable or disable the force control module protection monitor.
Force control protection monitor refers to the use of user-set protection parameters by the controller in
impedance mode to limit the speed, momentum, power and other states of the robot, in order to achieve
protection in impedance mode.

Definition

FcMonitor (On); enable the force control module protection monitor, and the user-set protection
parameters take effect during the impedance motion.
FcMonitor (Off); disable the force control module protection monitor. The user-set protection parameters
are not effective in impedance motion, and the controller will use default protection parameters to limit
the robot's motion status.

Example

Example 1
FcInit (tool0,wobj0,0);
SetControlType (0);
SetFcJointVelMax (1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0);
SetFcJointEnergyMax (100, 100, 100, 100, 100, 100, 0);
FcMonitor (On);//Enable the force control module protection monitor
FcStart();
…
FcMonitor (Off);//Disable the force control module protection monitor
…
FcStop();

Attention

 It is recommended to set the protection parameters first when using impedance mode, and then use
FcMonitor On to enable the force control module protection monitor.

 If the protection parameters are not set or if FcMonitor Off is used to disable the force control
module protection monitor, the controller will take effect with the default protection parameters.

 The default protection parameters have significant limitations, making it easy to trigger force
control protection errors when using impedance mode.

15.4.4.23GetEndToolTorque
Explanation It is used to get the current robot torque

Definition

GetEndToolTorque(Tool, Wobj [, RefType]);
The parameter in [] can be ignored.
Return value, torque information, data type: TorqueInfo
Tool, the information of the tool currently in use. Data type: Tool
Wobj, the information of the work object currently in use. Data type: Wobj
RefType, reference frame relative to the torque, data type: Int
 0: default, torque information of the end-effector relative to the world frame
 1: torque information of the end-effector relative to the flange frame
 2: torque information of the end-effector relative to the tool frame

Example

TorqueInfo tmp_info = GetEndtoolTorque(tool1, wobj1);
//Obtain the information architecture of the torque applied to the tool at the end-effector of the robot in the
case of tool1 wobj1
…
Print(tmp_info.joint_torque.measure_torque);
Print(tmp_info.joint_torque.external_torque);
//Print the measured force and external force of each axis

0 15RL Commands

288 xCoreControl System User Manual

…
Print(tmp_info.cart_torque.m_torque);
//Print Cartesian space torque
…
Print(tmp_info.cart_torque.m_force[1]);
Print(tmp_info.cart_torque.m_torque[1]);
//Print information of force and torque in X direction

15.4.4.24SetFcJointVelMax
Explanation It is used to set the maximum axis velocity during impedance motion.

Definition

SetFcJointVelMax jnt1(vel，jnt2_vel，jnt3_vel，jnt4_vel，jnt5_vel， jnt6_vel，jnt7_vel);_
Jnt1_ vel, data type: double, the maximum velocity of Joint 1, in rad/s.
Jnt2_ vel, data type: double, the maximum velocity of Joint 2, in rad/s.
Jnt3_ vel, data type: double, the maximum velocity of Joint 3, in rad/s.
Jnt4_ vel, data type: double, the maximum velocity of Joint 4, in rad/s.
Jnt5_ vel, data type: double, the maximum velocity of Joint 5, in rad/s.
Jnt6_ vel, data type: double, the maximum velocity of Joint 6, in rad/s.
Jnt7_ vel, data type: double, the maximum velocity of Joint 7, in rad/s.

Example SetFcJointVelMax(1.0,1.0,1.0,1.0,0.5,0.5,0.5);
Maximum velocity of each joint of the collaborative robot, in rad/s

J1 J2 J3 J4 J5 J6 J7
ER3P 4.7 4.7 4.7 4.7 6.2 6.2 6.2
ER7P 4.7 4.7 4.7 4.7 6.2 6.2 6.2
ER3 4.7 4.7 4.7 6.2 6.2 6.2
ER7 4.7 4.7 4.7 6.2 6.2 6.2

SR3 4.7 4.7 4.7 6.2 6.2 6.2
SR4 4.7 4.7 4.7 6.2 6.2 6.2
SR5 4.7 4.7 4.7 6.2 6.2 6.2
CR7 4.7 4.7 4.7 6.2 6.2 6.2
CR12 4.7 4.7 4.7 6.2 6.2 6.2
CR17 4.7 4.7 4.7 6.2 6.2
CR18 4.7 4.7 4.7 6.2 6.2 6.2
CR20 4.7 4.7 4.7 6.2 6.2 6.2
CR25 4.7 4.7 4.7 6.2 6.2

15.4.4.25SetFcCartVelMax
Explanation It is used to set the maximum Cartesian velocity during impedance motion.

Definition

SetFcCartVelMax(vel_x，vel_y，vel_z，vel_a，vel_b， vel_c);
Vel_x, data type: double, maximum linear velocity in the X direction, in m/s.
Vel_y, data type: double, maximum linear velocity in the Y direction, in m/s.
Vel_z, data type: double, maximum linear velocity in the Z direction, in m/s.
Vel_a, data type: double, maximum angular velocity around the X axis, in rad/s.
Vel_b, data type: double, maximum angular velocity around the Y axis, in rad/s.
Vel_c, data type: double, maximum angular velocity around the Z axis, in rad/s.

Example SetFcCartVelMax (1.0,1.0,1.0,0.5,0.5,0.5);
Maximum Cartesian velocity of the collaborative robot, in m/s, /rad/s

Vel_x Vel_y Vel_z Vel_a Vel_b Vel_c
ER3P 2.0 2.0 2.0 4.7 4.7 4.7
ER7P 2.0 2.0 2.0 4.7 4.7 4.7
ER3 2.0 2.0 2.0 4.7 4.7 4.7
ER7 2.0 2.0 2.0 4.7 4.7 4.7
SR3 2.0 2.0 2.0 4.7 4.7 4.7
SR4 2.0 2.0 2.0 4.7 4.7 4.7
SR5 2.0 2.0 2.0 4.7 4.7 4.7
CR7 2.0 2.0 2.0 4.7 4.7 4.7
CR12 2.0 2.0 2.0 4.7 4.7 4.7
CR17 2.0 2.0 2.0 4.7 4.7 4.7
CR18 2.0 2.0 2.0 4.7 4.7 4.7
CR20 2.0 2.0 2.0 4.7 4.7 4.7
CR25 2.0 2.0 2.0 4.7 4.7 4.7

0 15RL Commands

xCoreControl System User Manual 289

15.4.4.26SetFcJointMomentumMax
Explanation It is used to set the maximum angular momentum of joints during impedance motion.

Definition

SetFcJointMomentumMax(jnt1_moment，jnt2_moment，jnt3_moment，jnt4_moment，
jnt5_moment， jnt6_moment，jnt7_moment);
Jnt1_moment, data type: double, maximum angular momentum of Joint 1, in kg*m/s.
Jnt2_moment, data type: double, maximum angular momentum of Joint 2, in kg*m/s.
Jnt3_moment, data type: double, maximum angular momentum of Joint 3, in kg*m/s.
Jnt4_moment, data type: double, maximum angular momentum of Joint 4, in kg*m/s.
Jnt5_moment, data type: double, maximum angular momentum of Joint 5, in kg*m/s.
Jnt6_moment, data type: double, maximum angular momentum of Joint 6, in kg*m/s.
Jnt7_moment, data type: double, maximum angular momentum of Joint 7, in kg*m/s.

Example SetFcJointMomentumMax (0.1, 0.1, 0.1, 0.1, 0.055, 0.055, 0.055);
Maximum angular momentum of each joint of the collaborative robot, in kg*m/s

J1 J2 J3 J4 J5 J6 J7
ER3P 1.0 1.0 1.0 1.0 0.55 0.55 0.55
ER7P 2.0 2.0 1.0 1.0 0.55 0.55 0.55
ER3 1.0 1.0 1.0 0.55 0.55 0.55
ER7 2.0 2.0 1.0 0.55 0.55 0.55
SR3 0.55 0.55 0.55 0.2 0.2 0.2
SR4 1.0 1.0 0.55 0.2 0.2 0.2
SR5 1.0 1.0 0.55 0.2 0.2 0.2
CR7 2.0 2.0 1.0 0.55 0.55 0.55
CR12 3.5 3.5 2.0 1.0 0.55 0.55
CR17 7.0 7.0 5.5 3.5 2.0
CR18 3.5 3.5 2.0 1.0 0.55 0.55
CR20 7.0 7.0 3.5 2.0 1.0 1.0
CR25 7.0 7.0 3.5 2.0 1.0

15.4.4.27SetFcJointEnergyMax
Explanation It is used to set the maximum power of joints during impedance motion.

Definition

SetFcJointEnergyMax (jnt1_ energy，jnt2_ energy，jnt3_ energy，jnt4_ energy，jnt5_ energy，jnt6_
energy，jnt7_ energy);
Jnt1_ energy, data type: double, maximum power of Joint 1, in kg.m2/s3.
Jnt2_ energy, data type: double, maximum power of Joint 2, in kg.m2/s3.
Jnt3_ energy, data type: double, maximum power of Joint 3, in kg.m2/s3.
Jnt4_ energy, data type: double, maximum power of Joint 4, in kg.m2/s3.
Jnt5_ energy, data type: double, maximum power of Joint 5, in kg.m2/s3.
Jnt6_ energy, data type: double, maximum power of Joint 6, in kg.m2/s3.
Jnt7_ energy, data type: double, maximum power of Joint 7, in kg.m2/s3.

Example SetFcJointEnergyMax (100, 100, 100, 100, 100, 100, 100);
Maximum power of each joint of the collaborative robot, in kg*m2/s3

J1 J2 J3 J4 J5 J6 J7
ER3P 2500.0 2500.0 2500.0 2500.0 1500.0 1500.0 1500.0
ER7P 4000.0 4000.0 3000.0 3000.0 2000.0 1000.0 1000.0
ER3 2500.0 2500.0 2500.0 1500.0 1500.0 1000.0
ER7 4000.0 4000.0 3000.0 2000.0 1000.0 1000.0
SR3 1500.0 1500.0 1500.0 600.0 600.0 600.0
SR4 2500.0 2500.0 1500.0 600.0 600.0 600.0
SR5 2500.0 2500.0 1500.0 600.0 600.0 600.0
CR7 4000.0 4000.0 3000.0 2000.0 1000.0 1000.0
CR12 8000.0 8000.0 5000.0 3500.0 1500.0 1500.0
CR17 8000.0 8000.0 5000.0 1500.0 1500.0
CR18 4000.0 4000.0 3000.0 2000.0 1000.0 1000.0
CR20 16000.0 16000.0 8000.0 4500.0 2500.0 2500.0
CR25 16000.0 16000.0 8000.0 4500.0 2500.0

15.4.5Drag and replay
15.4.5.1ReplayPath

Explanation
It is used to replay the recorded trajectory using drag teaching. You can control the running rate during
replay.
Note: If the velocity of the recorded drag trajectory is too high and the replay rate is set too high, it is easy

0 15RL Commands

290 xCoreControl System User Manual

to trigger servo alarms and damage the machine. It is recommended to gradually increase the replay rate
from low velocity.

Definition

ReplayPath(path [, rate] [, wobj/tool]);
Path, data type: path, type of drag and replay path, which is defined in the path list generated by drag
teaching.
Rate, data type: double, replay percentage, range: 0.01−3.00. 0.01 means replay at 1% running rate when
dragging; 1.00 at 100% running rate; and 3.00 at 300% running rate.
wobj/tool, data type: tool/work object, to specify the end-effector for the replay command to be a tool or
work object. During the replay, the robot will change the replay control parameters according to the tool
of the corresponding device to improve the operating stability

Example
Example 1
ReplayPath(path , 1, tool1);
Use the original running rate to record and replay.

15.4.6IO commands
15.4.6.1SetDO

Explanation
It is used to set the value of a digital output signal. If the command is performed after the motion
command, it will not interrupt the turning zone and be triggered at the end of the motion command
trajectory or at the starting point of the turning zone. See Example 2 for specific usage.

Definition

SetDO(DoName，Value);
DoName, data type: signaldo, to determine the name of the DO signal that needs to change state, which
must be a variable that has already been defined in the input/output interface.
Value, data type: bool, the target state of the DO signal, and only true and false are available.

Example

Example 1
SetDO(do2，true);
The digital output point corresponding to do2 is set at a high level.

Example 2
Scenario 1: IO commands between two motion commands with turning zones is adopted
MoveL(p1，v1000，z50，tool0);
SetDO(do2，true);
MoveL(p2，v1000，z50，tool0);
At this point, the SetDO command is triggered at the starting point of the turning zone from p1 to p2.

Scenario 2: There are no longer motion commands after using the IO command with the turn area motion
command
MoveL (p1， v1000， z50， tool0);
SetDO (do2， true);
....................................(There are no subsequent motion commands or commands to interrupt the turning
zone)
At this point, the SetDO command is triggered to execute after the motion command reaches p1.

Scenario 3: Motion command does not include the turning zone
MoveL (p1， v1000， fine， tool0);
SetDO (do2， true);
....................................(Regardless of subsequent commands)
At this point, the SetDO command is triggered to execute after the motion command reaches p1.

15.4.6.2SetAllDO

Explanation
It is used to set the value of all digital output signals. If the command is performed after the motion
command, it will not interrupt the turning zone and be triggered at the end of the motion command
trajectory or at the starting point of the turning zone. See Example 2 of SetDO for specific usage.

Definition SetAllDO(Value);
Value, data type: bool, the target state of the DO signal, and only true and false are available.

Example
Example 1
SetAllDO (true);
Set all digital output voltages to a high level, except DO bound with system function.

15.4.6.3SetGO

Explanation
It is used to set the value of a group. If the command is performed after the motion command, it will not
interrupt the turning zone and be triggered at the end of the motion command trajectory or at the starting
point of the turning zone. See Example 2 of SetDO for specific usage.

0 15RL Commands

xCoreControl System User Manual 291

Definition

SetGO(GoName，Value);
GoName, data type: signalgo, to determine the name of the go signal that needs to change value, which
must be a variable that has already been defined in the input/output interface.
Value, data type: int, the target value of go signal. Note: The maximum supported value is 2,147,483,648
(231).

Example
Example 1
SetGO (go3，8);
Set the value of a set of physical ports corresponding to go3 as 8.

15.4.6.4SetAO

Explanation
It is used to set the value of an analog output signal. If the command is performed after the motion
command, it will not interrupt the turning zone and be triggered at the end of the motion command
trajectory or at the starting point of the turning zone. See Example 2 of SetDO for specific usage.

Definition

SetAO(AoName，Value);
AoName, data type: signalao, to determine the name of the ao signal that needs to change value, which
must be a variable that has already been defined in the input/output interface.
Value, data type: double, the target value of the ao signal.

Example
Example 1
SetAO (ao3，5.123);
Set the value of a set of physical ports corresponding to ao3 as 5.123.

15.4.6.5PulseDO

Explanation
It is used to generate a pulse of the DO signal. If the command is performed after the motion command, it
will not interrupt the turning zone and be triggered at the end of the motion command trajectory or at the
starting point of the turning zone. See Example 2 of SetDO for specific usage.

Definition

PulseDO ([\High,] [length,] signal);
[\High], when the command is executed, regardless of the current state, the signal state is always set to
high (1).
[length], to specify pulse length: 0.001-2000s. Default to 0.2s when missing. Data type:double or int
signal, the signal to generate the pulse. Data type:signaldo

Attention If SetDO/SetGO is executed during PulseDO, PulseDO will be invalid and SetDO/SetGO will be
executed.

15.4.6.6PulseReg

Explanation

It is used to specify a register to generate a pulse signal for a specified time and restore the initial value of
the register after the end of the time. If this command is performed after the motion command, it will not
interrupt the turning zone but will be triggered at the end of the motion instruction trajectory or at the
starting point of the turning zone. See Example 2 of SetDO for specific usage.

Definition

PulseReg (Register, Value, Time);
Register, name of the register to generate the pulse signal, data type: Bit/Bool register
Value, to specify the value of the pulse signal, data type: Bool.
Time, the duration of the pulse signal in seconds, with a limit range of [0.001, 10.0]. Data type: double

Attention
If WriteRegByName or register equal assignment is executed during PulseReg, the valid value of the
register will take effect depending on the last executed command. But the initial value before executing
PulseReg will be restored after the time period specified by PulseReg ends.

15.4.7Communication commands
In the RL program, the robot can communicate with external devices through both Ethernet and serial ports. A unified set of
commands is designed for resource management and data sending and receiving, which ensures consistent use experience.

Command set TCP client TCP server Serial port
OpenDev Y Y Y

SocketAccept N/A Y N/A
CloseDev Y Y Y
SendString Y Y Y
SendByte Y Y Y
ReadBit Y Y Y
ReadByte Y Y Y
ReadDouble Y Y N/A
ReadInt Y Y N/A

ReadString Y Y Y
GetSocketConn Y N/A N/A
GetSocketServer N/A Y N/A

0 15RL Commands

292 xCoreControl System User Manual

GetBufSize N/A N/A Y
ClearBuffer Y Y Y

15.4.7.1OpenDev

Explanation

It is used to open a listening server, initiate a connection as a client, and open a serial port resource,
depending on the object indicated by the parameter.
When opening the SocketServer object, the robot will initiate resource and complete port binding and port
listening.
When opening the SocketConn object, the robot will act as a TCP client and try to connect to the external
server according to the preset ip and port.
When opening the serial port resource, the serial port will be initialized according to the window
parameters and communication conditions will be provided.

Definition OpenDev(name);
name, data type: string, the name of the client object or server object or serial port resource.

Example

Example 1
SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"};
Try
OpenDev("clt1") // Try to connect to the remote server. If the connection is successful, the attr of

clt1 will be modified to outgoing automatically.
string readstr = ReadString(30, "clt1");
..... // Logic processing of readstr
string sendstr = "hello server！";
SendString(sendstr , "clt1"); //Use clt1's client connection to send data
... // A series of code
catch(ERROR e); // ERROR error type, including the file that generated the error, line number,

error code, and error content
... // A series of exception handling

Endtry

Example 2
SocketServer listener1 = {"192.168.0.200", 8090, "svr1"};
global pers bool exit = false;
try
OpenDev("svr1"); //Bind port, listening port
while(exit != true)
SocketConn conn = SocketAccept("svr1"); // Client connected via blocking receive

Endwhile
catch(ERROR e);
... // A series of exception handling

Endtry
If an error is reported, the control system will throw an exception and report the cause of the error. If the
exception is not caught by the try block, the control system will stop the program.

15.4.7.2SocketAccept

Explanation
It is used to block wait for client connections to arrive and complete client connection. This command is
only used when the robot is acting as a TCP server. This command is only used when the robot is acting as
a TCP server.

Definition

Return value, data type: SocketConn, after an external device connects to the robot as a TCP client, the
control system generates a communication object that is used by the RL program to control
communication read and write.
SocketConn conn = SocketAccept(name);
name, data type: string, the name of the SocketServer object that has been prepared and opened
successfully using OpenDev.

Example

Example 1
SocketServer listener1 = {"192.168.0.200", 8090, "svr1"};
global pers bool exit = false;
try
OpenDev("svr1") //Bind port, listening port
while(exit != true)
SocketConn conn = SocketAccept("svr1"); // Client connected via blocking receive
conn.name = "client1"; // Important! Give the communication connection a name, otherwise, it will

be difficult to read and write data by name
conn.suffix = "\n"; // Optional, set the packet terminator

Endwhile
catch(ERROR e)
... // A series of exception handling

0 15RL Commands

xCoreControl System User Manual 293

Endtry
If an error is reported, the control system will throw an exception and report the cause of the error. If the
exception is not caught by the try block, the control system will stop the program.

Attention

 The command will block the current task, so the correct way to use it is in multitasking. There is a
low-priority task continuously receiving and generating the communication connection object
SocketConn independently.

 The command returns a connection operation object and has the ip and port information of the client
connection, which can be used by other parts of the program. The returned connection object is a
SocketConn structure with a name randomly assigned by the system. After getting the connection
object, please change the name of the connection object to avoid connection loss.

 The server supports multiple connections.

Note

To ensure the stability of the robot's motion control, the control system allocates only a portion of
its computational resources to network communication functions. When the robot acts as a socket
server listening for connections, if it receives extremely frequent network connection requests or
data streams resembling a "DDoS attack", this may cause the robot's network connections to
external devices (such as the teach pendant and other equipment) to disconnect or result in
operational lag.

Network connection or data interaction frequency must remain below 1 per millisecond (1/ms).

15.4.7.3CloseDev

Explanation It is used to close the resource, which can be used to close the TCP communication connection, TCP
listening server, or serial port resource.

Definition
CloseDev(name);
name, data type: string, SocketConn connection, listening server SocketServer object, or serial port
resource used for communication.

Example

Example 1
SocketConn scnn3 = {"192.168.0.200", 8090, "clt1", 2, "\n"};
Try
OpenDev("clt1");
string readstr = ReadString(30, "clt1");
..... // Logic processing of readstr
string sendstr = "hello server！";
SendString (sendstr, "clt1"); //Use clt1's client connection to send data
... // A series of code

catch(ERROR e);
... // A series of exception handling

endtry
CloseDev("clt"); //Close the socket client at last, regardless of whether an error occurs.

Example 2
SocketServer listener1 = {"192.168.0.200", 8090, "svr1"};
global pers bool exit = false;
try
OpenDev("svr1"); //Bind port, listening port
while(exit != true)
SocketConn conn = SocketAccept("svr1"); // Client connected via blocking receive
conn.name = "client1"; // Important! Give the communication connection a name, otherwise, it will be

difficult to read and write data by name
conn.suffix = "\n"; // Optional, set the packet terminator
Endwhile
catch(ERROR e)
... // A series of exception handling

Endtry;
CloseDev("client1"); //Close communication with external TCP client. Important!
CloseDev("svr1"); //Close the listening server

In Example 2, there are two network objects, and you must close the communication connection first and
then the server object, otherwise it will generate a state of incomplete resource release (TCP TIME_WAIT
state).
If the robot has established multiple communication connections with external devices when it acts as a
server, you need to close these communication connections in order before closing the server.

0 15RL Commands

294 xCoreControl System User Manual

In the case of incomplete resource release, the control system needs to be restarted. However, there is no
need to worry too much, as there is redundancy in the number of resources allowed in the control system;
this ensures the program runs properly after a small number of resources are occupied. However, it is
necessary to avoid a large number of resources being occupied due to incorrect use.

15.4.7.4SendString

Explanation It is used to send a string outwards. It can be sent through the network or serial port, depending on the
hardware resource represented by the identifier in the parameter.

Definition

SendString(StringData，name);
StringData, data type: string, the string data to be sent.
name, data type: string, the name of the hardware resource used to send the data. It can be the SocketConn
object with an established TCP communication connection or the serial port resource successfully opened.

Example

Example 1
SendString(“Hello World”，“Socket0”);
Send Hello World string outwards through Socket0. Socket0 is the SocketConn type that has been defined
and successfully connected.

Example 2
VAR String str1 =“Hello World”;
SocketSendString(str1，“Serial1”);
Sends the string Hello World stored in str1 outwards via Serial1. Serial1 is a defined and successfully
opened serial port.

15.4.7.5SendByte
Explanation It is used to send a byte outwards. It is very useful when sending ASCII characters.

Definition

SendByte(ByteData, name);
ByteData, data type: int, byte, or byte array, to send an unsigned byte or array from 0 to 255, mainly used
for ASCII codes.
Name, data type: string, the name of the socket or serial port to send data.

Example

Example 1
SendByte(13, “socket0“);
Send a carriage return through Socket0.

Example 2
VAR byte data1 = 13;
SendByte(data1, “serial0“);
First define a byte variable data1, which is actually a carriage return. Then send the data outwards through
serial0.

Example 3
VAR byte data2[2] = {13,17};
SendByte(data2, “socket0”);
Send an array variable byte data2 through socket0. Sent all in the array.

Example 4
VAR byte data2[2] = {13,17,20};
SendByte(data2[2], “socket0”);
Sends a byte variable of data2[2] through socket0, which represents the 2nd element of the array. The
value 17 of data2[2] will be sent without sending any other elements.

15.4.7.6ReadBit

Explanation

The control system receives data by bit.
1) Received by TCP through network communication. The externally sent data should end with the
terminator configured by SocketConn.
2) Received by serial communication. The external device only needs to send the data, with no
requirement on the terminator.

Definition

Return value, data type: bool array, to store the received bit data using a bool array. Each bit corresponds
to a bool member.
Ret = ReadBit(BitNum, TimeOut, name);
BitNum, data type: int, the number of bits that need to be read. The size should be an integer multiple of
8.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
name, data type: string, the name of the communication connection SocketConn or the serial port.
Ret, data type: bool array, received data. The first element of the array indicates the lowest bit.

0 15RL Commands

xCoreControl System User Manual 295

Example

Example 1
bool groupio[16];
groupio = ReadBit(16, 60, “Socket0”);
16 bit data is read by the ReadBit command and stored in a bool array named groupio with a timeout
period of 60 seconds.
Assume that the external device sends ASCII characters, 95 + terminator, the robot receives "95". As the
hexadecimal values of "9" and "5" are 0x39 and 0x35 respectively, the data received by the user is
0x3935. At this time, the groupio array from [1] to [16] is 1001 1100 1010 1100. The [1] is the low bit of
the data, which matches with 0x3935.

15.4.7.7ReadByte

Explanation It is used to receive data with a certain number of bytes. Note that the data needs to be separated by
commas.

Definition

Return value, data type: byte array, to store the received data using a byte array.
Ret = ReadByte(ByteNum, TimeOut, name);
ByteNum, data type: int, the number of bits that need to be read. The size should be an integer multiple of
8.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
name, data type: string, the name of the communication connection SocketConn or the serial port.
Ret, data type: byte array, received data.

Example

Example 1
byte rets[6] = {0,0,0,0,0,0};
rets = ReadByte(6,60,"clt1");
6-byte data is read and stored in a bool array named rets with a timeout period of 60 seconds.

Attention
Note that bytes from external devices need to be separated by commas, e.g. send "1,2,3,4,5,6".
When sending data via TCP, the data should end with the pre-defined terminator.
When sending data via serial port, the terminator is not required.

15.4.7.8ReadDouble

Explanation
It is used to receive double-type data via Socket. The sent data should end with the pre-defined terminator.
Note that this command is only valid for TCP network communication and when robots act as the
client/server, but not for serial ports.

Definition

Return value, data type: double array, to store the received data using a double array.
Ret = ReadDouble(DoubleNum, TimeOut, name);
DoubleNum, data type: double, the number of doubles to be read, up to 4,096.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
name, data type: string, the name of the Socket used to receive the data.

Example

Example 1
double dd[10];
dd =ReadDouble(10, 60, “Socket0”) ;
Read 10 double-type data and store them in a double array named dd with a timeout period of 60 seconds.

15.4.7.9ReadInt

Explanation

It is used to receive int-type data via Socket. Externally sent data must end with the pre-defined
terminator.
Note that this command is only valid for TCP network communication and when robots act as the
client/server, but not for serial ports.

Definition

Return value, data type: int, to store the received data using an int array.
Ret = ReadInt(IntNum, TimeOut, name);
IntNum, data type: int, the number of int to be read, up to 4,096.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
name, data type: string, the name of the Socket used to receive the data.

Example

Example 1
int ii[10];
ii = ReadInt(10, 60, “Socket0”) ;
10 int data are read and stored in an int array named ii with a timeout period of 60 seconds.

15.4.7.10ReadString
Explanation It is used to read a string and return it. Externally sent data should end with the pre-defined terminator.

Definition

Return value, data type: string, to store the received string.
Ret = ReadString(TimeOut, name, [len]);
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
name, data type: string, the name of the socket or serial port to receive data.

0 15RL Commands

296 xCoreControl System User Manual

len, data type: int, optional parameter, only used when reading through the serial port. Since the
terminator is not defined in the serial port, it is necessary to specify the length before successful reading
and parsing.

Example

Example 1
VAR String str1
str1 = ReadString(60, “Socket1”);
Receive a string from Socket1 and store it in str1 with a timeout period of 60 seconds. Network
communication.

Example 2
VAR String str1
str1 = ReadString(60, “serial0”,5);
Receive a string for a length of 5 bytes from serial0 and store it in str1 with a timeout period of 60
seconds. Serial port communication.

15.4.7.11GetSocketConn

Explanation

It is used to find the socket attribute set object using the socket connection name. The result obtained by
this command can be used for judgment and processing logic. It should be used only as a read-only object.
This command is only applicable to communication connections (including robot as client, or as a server
which has been connected to the channel for communication), not for listening servers and serial ports.

Definition

Return value, data type: SocketConn, the socket attribute object found by given name.
Ret = GetSocketConn(name);
name, data type: string, the name of the communication connection SocketConn.
Ret, data type: SocketConn, the socket attribute object found by given name.

Queryable
properties

Query method Meaning and example

ip address ret.ip String, e.g. "192.168.0.161"
Port number ret.port integer, e.g. 8090

Attribute ret.attr

Robot as server: "incoming".
Robot as client: "outgoing".
If the connection is not established: "" or other value, usually
blank

Cache size ret.cache 1−100
Name ret.name In the given example, it is "client0"

Connection state ret.state closed, establish

Example

Example 1
SocketConn ret= GetSocketConn(“client0”);
Find SocketConn object with the name "client0". You can use ret to get the attributes of this connection,
including the ip address, port number, communication terminator, and connection state.

15.4.7.12GetSocketServer

Explanation

Find the corresponding server attribute set object with the user-defined name. The result obtained by this
command can be used for judgment and processing logic. It should be used only as a read-only object.
This command is only applicable to listening servers (SocketServer objects), not to communication
connections (including robot as client, or as a server which has been connected to the channel for
communication) and serial ports.

Definition

Return value, data type: SocketServer, the server attribute object found by given name.
Ret = GetSocketServer(name);
Name, data type: string, the name of communication connection SocketServer.
Ret, data type: SocketServer, the socket attribute object found by given name.

Queryable properties Query method Meaning and example
ip address ret.ip String, e.g. "192.168.0.161"
Port number ret.port integer, e.g. 8090

Name ret.name In the example above, it is "svr1"
Connection state ret.state closed, listening, error

Example

Example 1
SocketServer listener1 = {"192.168.0.200", 8090, "svr1"};
OpenDev("svr1"); //Bind port, listening port
//Get the SocketServer object using the connection identifier "svr1", at this time ret will copy all the states
of listener1 in Task 1
SocketServer ret= GetSocketServer("svr1");
if(ret.state == "listening") //Use SocketServer's attr attribute to judge if listening is in underway
//Logic processing

endif

0 15RL Commands

xCoreControl System User Manual 297

15.4.7.13GetBufSize

Explanation It is used to get the amount of data not read in the buffer of the serial port, in bytes. The command is only
applicable to the serial port, not to the TCP server and the client.

Definition

Return value, data type: int, the amount of unprocessed data in the buffer, in bytes.
Ret = GetBufSize(name);
name, data type: string, the name of the serial port resource.
Ret, data type: int, the amount of unprocessed data in the buffer, in bytes.

Example

Example 1
OpenDev("serial0");
int a = GetBufSize("serial0");
Print(a);

15.4.7.14ClearBuffer

Explanation Clear the connected buffer, and any unread data will be lost. The serial port and socket data are supported.
Data that has been split by the terminator and data that has not been split will be cleared.

Definition ClearBuffer(name);
name, data type: string, name of the link.

Example 1

Assuming that the terminator is \r, two copies of data have been received and one copy of data is
being received. After executing this command, all the data in the buffer will be cleared, and the RL
program can only read the re-sent data after clearing
123456789\r
Abcdefg\r
mmmmmm

15.4.7.15ReadOpcUaVarByName
Explanation It is used to read the value of OPC-UA custom variables by name.

Definition

ReadOpcUaVarByName(name, value);
name, data type: string, the name of OPC-UA custom variables.
value, data type: bool/byte/int/double/string, to store the value of OPC-UA custom variables that are read.
If the type of the value does not match the type of the OPC-UA custom variable, it will be automatically
converted. Note: When converting string to the value type, it is always 0.
No return value.

Example

Example 1
int value = 0;
ReadOpcUaVarByName(“int_var”, value);
Print(value);

15.4.7.16WriteOpcUaVarByName
Explanation It is used to modify the value of OPC-UA custom variables by name.

Definition

WriteOpcUaVarByName(name, value);
name, data type: string, the name of OPC-UA custom variables.
value, data type: bool/byte/int/double/string, the modified value of OPC-UA custom variables. If the type
of the value does not match the type of the OPC-UA variable, it will be automatically converted. Note:
When converting string to the value type, it is always 0.

Example

Example 1
int value = 0;
WriteOpcUaVarByName(“int_var”, value);
WriteOpcUaVarByName(“int_var”, 123);

15.4.8Network command
15.4.8.1SocketCreate (expired)

Explanation

Establish a Socket connection. By using the Socket instruction, the RL program can obtain data from an
external device or send out program data. The RL language supports the simultaneous establishment of
multiple different Sockets for the connection of multiple external devices. Different names may be used to
distinguish between the different Sockets. The Socket instruction is based on the TCP/IP protocol, so
theoretically any external device that supports TCP/IP can communicate with the RL program to exchange
data. All data sent to the RL Socket instruction (i.e. data received using the SocketRead series of
instructions) should end with a carriage return. All data before the receipt of the carriage return will be
merged into the same data processing. When using the Socket function, the robot controller only supports

0 15RL Commands

298 xCoreControl System User Manual

connection to an external server as a client.
Up to 10 Socket connections are supported.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

Return value, data type: bool, return true if created successfully and false if failed
SocketCreate（"ip_Address", Port, "Name", [Cache] [, "Terminator"]);
ip_Address, data type: string, to define the ipv4 address that needs to be connected to the server. The
double quotation marks shall be used to include it.
Port, data type: int, to define the server port number.
Name, data type: string, to define the name of a new Socket. Different names must be specified between
different Sockets.
Cache, data type: int, to define the size of the Socket cache. The communication data is stored in the
cache queue and can be omitted.
Terminator, data type: string, to define the terminator type of socket communication, which can be
omitted, default to "\r".

Example

Example:
if (SocketCreate("10.0.6.11",8080,"S1",10,"\r"))

// Successful creation
else

// Error handling
endif

Attention

Due to the limitation of the TCP/IP protocol resource release mechanism, do not call the commands
SocketCreate and SocketClose frequently. Otherwise, the program may run incorrectly.
To avoid frequent calls to the SocketCreate and SocketClose commands in loop mode, it is best to add a
time delay between the two commands, e.g.
SocketClose("S1");
wait (0.1);
SocketCreate("10.0.6.11",8080,"S1",10,"\r");

15.4.8.2SocketClose (expired)

Explanation
It is used to close the Socket.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition SocketClose（”SocketName”);
SocketName, data type: string, the name of Socket to be closed.

Example Example 1
SocketClose(”Socket0”);

Attention
Do not use the SocketClose command directly after the SocketSend series of commands. Failure to do so
may result in data transmission failures. Use the SocketClose command after receiving the confirmation
messages.

15.4.8.3SocketSendString (expired)

Explanation
It is used to send a string outwards via Socket.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition
SocketSendString（StringData，”SocketName”);
StringData, data type: string, the string data to be sent.
SocketName, data type: string, the name of the Socket used to send the data.

Example

Example 1
SocketSendString（“Hello World”，”Socket0”);
Send Hello World string outwards through Socket0.

Example 2
VAR String str1 =“Hello World” ;
SocketSendString（str1，”Socket0”）;
Send the str1 stored string via Socket0.

15.4.8.4SocketSendByte (expired)

Explanation
It is used to send a byte outwards through the Socket. It is very useful when sending ASCII characters.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition SocketSendByte(ByteData, “SocketName”) ;
ByteData, data type: int, byte, or byte array, to send an unsigned byte or array from 0 to 255, mainly used

0 15RL Commands

xCoreControl System User Manual 299

for ASCII codes.
SocketName, data type: string, the name of the Socket used to send the data.

Example

Example 1
SocketSendByte(13, “socket0“);
Send a carriage return through Socket0.

Example 2
VAR byte data1 = 13;
SocketSendByte(data1, “socket0“);
First define a byte variable data1, which is actually a carriage return. Then send it outwards through
socket0.

Example 3
VAR byte data2[2] = {13,17} ;
SocketSendByte(data2, “socket0”) ;
Send an array variable byte data2 through socket0.

15.4.8.5SocketReadBit(expired)

Explanation
It is used to receive data by Bit through the Socket. Externally sent data must end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

Return value, data type: bool, to store the received bit data using a bool array. Each bit corresponds to a
bool member.
SocketReadBit(BitNum, TimeOut, “SocketName”);
BitNum, data type: int, the number of bits that need to be read. The size should be an integer multiple of
8.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
SocketName, data type: string, the name of the Socket used to receive the data.

Example

Example 1
bool groupio[16];
groupio = SocketReadBit(16, 60, “Socket0”);
16 bit data is read by the SocketReadBit command and stored in a bool array named groupio with a
timeout period of 60 seconds.

15.4.8.6SocketReadDouble(expired)

Explanation
It is used to receive double-type data via Socket. Externally sent data must end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

Return value, data type: double, to store the received data using a double array.
SocketReadDouble(DoubleNum, TimeOut, “SocketName”);
DoubleNum, data type: double, the number of doubles to be read, up to 30.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
SocketName, data type: string, the name of the Socket used to receive the data.

Example

Example 1
double dd[10];
dd = SocketReadDouble(10, 60, “Socket0”);
Read 10 double-type data using the SocketReadDouble command and store it in a double array named dd
with a timeout period of 60 seconds.

15.4.8.7SocketReadInt(expired)

Explanation
It is used to receive int-type data via Socket. Externally sent data must end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

Return value, data type: int, to store the received data using an int array.
SocketReadInt(IntNum, TimeOut, “SocketName”);
IntNum, data type: int, the number of int to be read, up to 30.
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
SocketName, data type: string, the name of the Socket used to receive the data.

Example

Example 1
int ii[10];
ii = SocketReadInt(10, 60, “Socket0”);
10 int data is read by the SocketReadInt command and stored in an int array named ii with a timeout
period of 60 seconds.

0 15RL Commands

300 xCoreControl System User Manual

15.4.8.8SocketReadString(expired)

Explanation
It is used to read a string from Socket and return it. Externally sent data should end with a carriage return.
Note that this command is marked as "expired" for it is used in xCore Control System version 1.3. It is
still valid in higher versions, but no longer maintained. Further use is not recommended.

Definition

Return value, data type: string, to store the received string.
SocketReadString(TimeOut, “SocketName”);
TimeOut, data type: int, timeout period, in s, ranging from 0 to 86400 and 60s by default.
SocketName, data type: string, the name of the Socket used to receive the data.

Example

Example 1
VAR String str1
str1 = SocketReadString(60, “Socket1”);
Receive a string from Socket1 and store it in str1 with a timeout period of 60 seconds.

15.4.9Logic commands
15.4.9.1Return

Explanation

Function return.
When the program encounters a RETURN command, if the program is currently in a subroutine, the
program will return to the previous function. If the program is currently in the main function, the program
ends directly.

15.4.9.2Wait
Explanation The program waits for a period of time ranging from 0 to 2147484 seconds.

Example
Example 1
Wait (2);
It indicates waiting for 2s.

15.4.9.3WaitUntil

Explanation It is used to wait for a certain condition to be established; the timeout sign is set to true if it is exceeded,
and after the waiting, the program proceeds to the next execution.

Definition

WaitUntil(cond,\MaxTime,\TimeFlag)
Cond, bool type logic expression
MaxTime, timeout and optional parameter, in seconds, with int or double type
TimeFlag, timeout flag, set to true if timeout occurs with optional parameter, using the bool type variable

Example

Example 1
WaitUntil (di2 == true);
…
It means waiting until the di2 signal value is true before executing the following statements.

Example 2
WaitUntil (di2 == true,5);
…
It means waiting until the di2 signal value is true. If the waiting time is over 5s and the di2 signal is still
false, the following statement is executed.

Example 3
Bool flag = false;
WaitUntil (di2 == true, 5,flag);
…
It means waiting until the di2 signal value is true. If the waiting time is over 5s and the di2 signal is still
false, the flag is set to true, and the following statement is executed. If the di2 turns to true within 5s, the
flag is set to false. The flag can be used for subsequent logic judgment.

15.4.9.4Break

Explanation
It is used to jump out of the current loop, and is used in the WHILE loop in the RL language. When the
WHILE loop is executed to Break, regardless of WHILE's CONDITION, it will jump out from the
WHILE loop directly.

Example

Example 1
VAR int counter = 0;
WHILE(1)

IF(counter == 5)
break;

Endif

0 15RL Commands

xCoreControl System User Manual 301

counter++;
ENDWHILE
The program will jump out of the WHILE loop when the counter is 5.

15.4.9.5IF…Else if…Else
Explanation Conditional judgment command

Example

Example 1
IF(condition1)
//a
Else if (condition2)
//b
Else if (condition3)
//c
Else
//d
Endif
Execute logic a when condition1 is true, logic b when condition2 is true, and so on.

15.4.9.6Goto
Explanation The Goto command allows the pointer to jump to the marked command

Example

Example 1
int a = 0;
int b = 9;
Goto end;
print(a);
end:;
print(b);
Define two variables a and b, then use the print function to print two statements. Use the Goto statement
to force a jump to the end marker position of the print b statement, at which point the print of a will not be
executed.

15.4.9.7For
Explanation It is used to define a loop control structure that executes a specified number of times.

Example

Example 1
For(int i from 1 to 10)
Print(“i = %d\n”, i);

endfor
This program prints i 9 times from 1 to 10 by adding 1 each time in sequence.

Example 2
For(int i from 1 to 10 step 3)
Print(“i = %d\n”, i);

Endfor
This program prints i 3 times from 1 to 10 by adding 3 each time in sequence.

Supplementary explanation:
Continue and Break can be used to control the For flow. See the Continue and Break commands for
details.

15.4.9.8Continue

Explanation Exit this loop. Continue executing the commands from the beginning of the loop, but just end the loop
without exiting from the loop body.

Example

Example 1
VAR int count = 0
WHILE(1)
count++
IF(count == 1)
Continue
Else
Break;
MoveAbsJ(j10， v500， fine， tool1);
Endif
ENDWHILE

0 15RL Commands

302 xCoreControl System User Manual

The code for MoveAbsJ will not be executed.

15.4.9.9Inzone

Explanation
It is used with SetDO or modbus, cclink, and other IO operations or commands; this command can ensure
that the signal is triggered at a defined point position, instead of being triggered earlier by the lookahead
pointer.

Example

MoveL p1
MoveL p2
Inzone
SetDO(dox, true);
print(123);
EndInzone
MoveL p3;
Supplementary explanation:
In the example, an Inzone command is used. After the interpreter looks ahead to Inzone, instead of
executing this command immediately, it generates an additional function which includes SetDo and print
commands. This additional function takes effect when the motion command move p2 is completed.
1. If there is a turning zone between the two motion commands p2 and p3, the additional function will be
executed at the moment when the robot reaches the turning zone
2. If there is no turning zone, the additional function will be executed at the moment the robot reaches p2

15.4.9.10While
Explanation While loop allows you to write a loop control structure that keeps executing before conditions are met.

Example

Example 1
int count = 0;
while(count < 10)
count++;
print(count);
endwhile
This program enables a loop that counts by 1 from 0 to 10 and prints.
Supplementary explanation: Continue and Break can be used to control the While flow. See the Continue
and Break commands for details.

15.4.9.11Pause

Explanation

It is used to pause the program.
The program enters the pause state after the previous statement of the pause statement is executed. The
program must be resumed by clicking on the teach pendant or running the signal through an external
program.

Attention This command does not support auxiliary programming for the moment

15.4.9.12try/catch

Explanation
The try-catch command is an error handling mechanism in RL language. If an error occurs between the try
and the catch commands, the program will convert the execution error into an error message set "e" and
continue running from the catch-end try code block

Definition

try
// do something
catch(error e)
print(e);
endtry

For example, reading data from a network link is a command that is likely to fail, but at this point, the user
does not want the robot to stop. Instead, the user can use try-catch to capture errors and process them
through RL programming
Description
error type description: error is a structure consisting of four parameters, namely
 file: string (error occurred in file name)
 line: int (error line)
 num: int (error code)
 reason: string (error reason)
The error structure can be printed directly through the print command.

// error data
...

0 15RL Commands

xCoreControl System User Manual 303

catch(error e)
print(e.line);
print(e.num);
print(e.reason);
print(e);
endtry

Example

Example 1
ReadOnce:;
Try
Double xyz[3] = ReadDouble(3, timeout, socketname);
Robtarget_0.trans.x = xyz[1];
Robtarget_0.trans.y = xyz[2];
Robtarget_0.trans.z = xyz[3];

MoveL (Robtarget_0, v2000, fine, tool0);
Catch(error e)
SendString(“Recv rob xyz error”, socketname);
Goto ReadOnce;
endtry

This program supports a simple application scenario. The communication command ReadDouble is used
to read a three-dimensional array from the TcpSocket as the xyz parameter of the motion point position,
and then the MoveL command is called to move to the corresponding Cartesian point.
If the try/catch command is not used and the point position received from the TcpSocket is wrong, the
robot will report "out of range" or "planning error" and stop the program.
If the try/catch command is used, the motion command error is still reported, but the program does not
stop. Instead, it jumps to the code segment between catch and endtry and handles the error as desired by
the user. In this example, SendString tells Socket the point position error received by the host, and the host
decides how to handle the error and calls the goto command to re-execute ReadDouble and wait for the
next position.

Example 2
re_read:;
try
opendev("conn_name");
string_res = readstring("conn_name");
catch (error e)
if (e.num == xxx)
// A certain manageable error does not pause
goto re_read;
else
print(e);
Pause;
endif
endtry

Attention Note: Force control commands cannot trigger try-catch

The error types and standard error codes that try/catch can process:
Classification Error command Explanation error.num error.reason

Default error Commands without dedicated error
codes -1 Unknown error

Serial port
related

command
When the serial port does not exist -1 Unknown error

Motion
related

command

MoveXX, Search,
TrigL, etc.
AccRamp, HomeSet,
and other motion
parameter settings

Tool and work object errors in motion
coordinates
Motion speed error
Motion load error
Beyond the motion range
Planning error
Encounter singularity, etc.

-1 Unknown error

Network
command

OpenDev Network link port error -1 Unknown error

All network commands RL-operated connection for external
communication -1 Unknown error

Calculation
and logic
commands

CalcJoinT
CalcRobt
CRobT
CJointT
CLKSTOP

Internal error of controller -1 Unknown error

0 15RL Commands

304 xCoreControl System User Manual

GOTO

Peripheral
control
(Jodell
series)

(RM series)

JodellGripInit
JodellSuckInit
JodellSuckStatus
RMRGMGripPosMove
RMRGMGripTrqMove
RMRGMGripStatus
RMRGMResetErr
RMCGripPosMove
RMCGripTrqMove
RMCGripStatus
RMCResetErr
RMRGMGripInit
RMCGripInit

Peripheral communication abnormal -1 Unknown error

Laser control All laser commands Laser welding OFF -1 Unknown error

Stacking
control

TrayUpdate
TrayCount
PalletUpdate
PalletLayerCount
PalletWobjCount
SolarVisionExec

Data sending and receiving error with
the host computer -1 Unknown error

Register
control ReadRegByteByName Data reading failed -1 Unknown error

Axis 4
locking SingAreaLockAxis4 Pose error, unable to activate the Axis

4 locking function -1 Unknown error

Internal error
of interpreter

Parameter type and
quantity errors of most
commands

-1 XXX parameter error

Internal error
of interpreter 0

Network
command
Serial port
command

OpenDev Connect to server failed 101 OpenDevConn failed
OpenDev Robot failed to start as server 102 OpenDevServer failed
GetSocketConn SocketConn not established 103 GetSocketConn failed, connection absent

GetSocketConn Obtaining the name of SocketConn
structure is a server 104 GetSocketConn failed, the object is

SocketServer
GetSocketServer GetSocketServer failed, server absent 105 GetSocketServer failed, server absent

OpenDev
Error in connection enabled input
parameter, there is no connection
matched in the variable list

106 OpenDev failed, non-existent object is used

SocketAccept Input parameter is not a server name 107 SocketAccept (server) requires a server name

GetSocketConn Error in obtaining the name of
SocketConn structure 108 GetSocketConn(conn), non-existent

SocketConn

GetSocketServer Error in obtaining the name of
SocketConn structure 109 GetSocketConn (server), non-existent

SocketServer
ReadBit Command input parameter error 110 ReadBit must read integer multiples of 8

ReadDouble Command input parameter error 111 ReadDouble exceeds the preset range (0,
4096]

ReadInt Command input parameter error 112 ReadInt exceeds the preset range (0, 4096]
ReadByte Command input parameter error 113 ReadByte exceeds the preset range (0, 4096]
ReadBit ReadDouble
ReadInt
ReadByte ReadString

Input time is too long 114 ReadXX time exceeds the preset range (0,
86400]

ReadBit
ReadDouble
ReadInt
ReadByte
ReadString

Connection disconnected or data read
error 115 Read failed

ReadDouble Beyond the limit time 116 ReadDouble timeout
ReadInt Beyond the limit time 117 ReadInt timeout
ReadString Beyond the limit time 118 ReadString timeout
ReadBit Beyond the limit time 119 ReadBit timeout
ReadByte Beyond the limit time 120 ReadByte timeout

SendString Command timeout or connection
disconnected 121 SendString timeout or connection

disconnected

SendByte Command timeout or connection
disconnected 122 SendByte timeout or connection disconnected

Conveyor
belt tracking

WaitObj
When executing the command, work
object is out of the start window and
cannot be tracked

123 Out StartWindow

WaitObj Waiting for tracking work object
timeout 124 Out WaitTime

WaitObj Repeated tracking of work object 125 Connected Twice
Possible occurrence Tracking process exceeds the 126 Out MaxDistance

0 15RL Commands

xCoreControl System User Manual 305

after tracking enabled working area and throws an exception

15.4.9.13SwitchCase

Explanation

SwitchCase, like the IF command, controls the flow control based on the input variable conditions.
RL interpreter will compare the variables in the Case field in order based on the input variable (condition).
If the two variables are equal, the interpreter will enter the code branch of the corresponding Case and
stop comparing and entering other code branches.
If all conditions are not met, it will enter the Default branch;
If no Case condition matches and there is no Default branch, it will enter no branch and the Switch
command ends;
Multiple conditions can be input for the Case command (see command structure Case C1, C12, C13 and
example 1).

Definition

Switch(condition)
Case C1,C12,C13:
Functions1()
Case C2:
Functions2()
Default:
DefaultFunction();
EndSwitch

Example

Example 1
reg_int is a register variable, the host (PLC) will update the value of the variable through relevant register
protocols (e.g. modbus, cclink). The production project expects the robot to execute the corresponding
function branch (e.g. a blocked trajectory) according to the value of the register. If the register inputs 1, 2,
and 3, then function A will be executed; if the register inputs 4, 5, and 6, then function B is executed. If
the above conditions are not met, function C will be executed in the Default branch.
Switch(reg_int)
Case 1,2,3:
FunctionsA();// The robot follows point positions related to function A
Case 4,5,6:
FunctionsB();// The robot follows point positions related to function B
Default:
FunctionC();// Execute function C if without specified input
EndSwitch

15.4.10Home command
15.4.10.1Home

Explanation It is used to make the robot return to the set Home through joint space motion
Definition The command includes no input parameters

Example

Example 1
HomeSet(0,30,0,60,0,90,0);
Home;
Use the HomeSet command to set the Home and then the Home command to move the robot to the drag
pose in the joint space.

Attention Home pose setting must be enabled on the Robot Setup > Quick Turn interface or through the HomeSet
command before the Home command can be used, otherwise, an error is reported.

15.4.10.2HomeSet
Explanation It is used to set the robot's Home in the joint space

Definition HomeSet (axis1,axis2,axis3,axis4,axis5,axis6,axis7);
Axisx, data type: Double, to set the angle of home on each axis

Example

Example 1
HomeSet(0,30,0,60,0,90,0);
Home;
Use the HomeSet command to set the Home and then the Home command to move the robot to the drag
pose in the joint space.

15.4.10.3HomeSetAt
Explanation It is used to obtain the setup data of the robot's Home

Definition
HomeSetAt(index);
Return value, data type: double, joint angle, in °
Index, data type: int, to get the joint angle of the specified axis at Home. When the index is 0, return if

0 15RL Commands

306 xCoreControl System User Manual

HomeSet is enabled, 1 means enabled, and 0 disabled.

Example

Example 1
HomeSet (0,30,0,60,0,90,0);
double angle2 = HomeSetAt(2)
angle2 Get the joint angle of joint 2 at 30°.

15.4.10.4HomeDef
Explanation Determine if the Home is set

Definition HomeDef()
Return value, data type: bool, true: Home already set, false: Home not set

15.4.10.5HomeSpeed
Explanation Set the running speed of Home command
Definition HomeSpeed Speed

Example

Example 1
HomeSpeed(v1000);
Home();
Set the Home speed to V1000. Then the Home command moves the robot to Home at the speed of V1000.

15.4.10.6HomeClr
Explanation Clear Home setting

Example
Example 1
HomeClr();
Clear Home set in the program. After clearing, the Home command cannot be executed.

15.4.11Math command
15.4.11.1Sin

Explanation sin() is used to calculate the sine of parameter x and return the result.

Definition
double sin(double x)
x in radians;
Return value: Return the calculated result between -1 and 1.

15.4.11.2Cos
Explanation cos() is used to calculate the cosine of parameter x and return the result.

Definition
double cos(double x)
x in radians;
Return value: Return the calculated result between -1 and 1.

15.4.11.3Tan
Explanation tan() is used to calculate the tangent of parameter x and return the result.

Definition
double tan(double x)
x in radians;
Return value: Return the tangent of parameter x.

15.4.11.4Cot
Explanation cot() is used to calculate the cotangent of parameter x and return the result.

Definition
double cot(double x)
x in radians;
Return value: Return the cotangent of the parameter x.

15.4.11.5Asin
Explanation asin() is used to calculate the arcsine of parameter x and return the result.

Definition
double asin(double x)
Parameter x ranges from -1 to 1, beyond which error will be reported.
Return value: Return the calculated result between -PI/2 and PI/2, in radians.

15.4.11.6Acos
Explanation acos() is used to calculate the arccosine of parameter x and return the result.

0 15RL Commands

xCoreControl System User Manual 307

Definition
double acos(double x)
Parameter x ranges from -1 to 1, beyond which error will be reported;
Return value: Return the calculated result between 0 and PI, in radians.

15.4.11.7Atan
Explanation atan() is used to calculate the arctangent value of parameter x and return the result.

Definition double atan(double x)
Return value: Return the calculated result between -PI/2 and PI/2.

15.4.11.8Sinh
Explanation tanh() is used to calculate the hyperbolic tangent of parameter x and return the result.

Definition
double sinh(double x)
The mathematical definition is: (exp(x) - exp(-x))/2;
Return value: Return the hyperbolic sine of parameter x.

15.4.11.9Cosh
Explanation cosh() is used to calculate the hyperbolic cosine of parameter x and return the result.

Definition
double cosh(double x)
The mathematical definition is: (exp(x)+exp(x))/2;
Return value: Return the hyperbolic cosine of the parameter x.

15.4.11.10Tanh
Explanation tanh() is used to calculate the hyperbolic tangent of parameter x and return the result.

Definition
double tanh(double x)
The mathematical definition is: sinh(x)/cosh(x);
Return value: Return the hyperbolic tangent of parameter x.

15.4.11.11Exp
Explanation exp() is used to calculate e to the x power, which is the e^x value, and return the result;

Definition double exp(double x)
Return value: Return the result of e to the x power.

15.4.11.12Ln
Explanation ln() is used to calculate the logarithm value of x at the base of e and return the result.

Definition
double ln(double x)
Function description: Find the natural logarithm of x, ln(x), x > 0;
Return value: Return the natural logarithm value of parameter x.

15.4.11.13log10
Explanation log10() is used to calculate the logarithm value of x at the base of 10, and return the result.

Definition
double log10(double x)
Where x>0;
Return value: Return the natural logarithm value of parameter x at the base of 10.

15.4.11.14pow
Explanation pow() is used to calculate x to the y power, which is the xy value, and return the result;

Definition double pow(double x, double y)
Return value: Return the result of x to the y power.

15.4.11.15sqrt
Explanation sqrt() is used to calculate the square root of parameter x and return the result.

Definition
double sqrt(double x)
The parameter x must be positive;
Return value: Return the square root of parameter x.

15.4.11.16ceil

Explanation ceil() will return the minimum integer value no less than parameter x, and the result will be returned in the
double type.

0 15RL Commands

308 xCoreControl System User Manual

Definition double ceil(double x)
Return value: Return a minimum integer value not less than the parameter x.

15.4.11.17floor

Explanation floor() will return the maximum integer value not greater than the parameter x, and the result will be
returned in the double type.

Definition double floor(double x)
Return value: Return the maximum integer value not greater than the parameter x.

15.4.11.18abs
Explanation Find the absolute value of x, |x|;

Definition
int abs(int x)/double abs(double x)
Return value: When the input parameter is of int type, the output is also of int type. When the input
parameter is of double type, the output is also.

15.4.11.19rand
Explanation To generate an integer random number;

Definition rand()
Return value: An integer random number, ranging from 0 to 2147483647.

15.4.12Bit operation
15.4.12.1BitAnd

Explanation

BitAnd is used to generate logical conjunction (and) for byte type data. See table below:

Definition

Return value, data type: byte, the result returned by performing logical conjunction of two byte-type data.
BitAnd (BitData1, BitData2);
BitData1, data type: byte, the byte data 1 to be processed.
BitData2, data type: byte, the byte data 2 to be processed.

Example

Example 1
VAR byte data1 = 34;
VAR byte data2 = 38;
VAR byte byte3 = BitAnd(data1, data2); //34
Define the byte-type variable data1 and data2. assign them with the value of 34 and 38, respectively;
perform logical conjunction on data1 and data2, the returned value of 34 is assigned to byte3.

15.4.12.2BitCheck
Explanation It is used to check whether a bit in a byte-type data is 1. If so, returns true, otherwise, false.

Definition

Return value, data type: bool, true indicates the bit is assigned to 1, false indicates the bit is assigned to 0.
BitCheck (BitData, BitPos);
BitData, data type: byte, the byte data to be processed.
BitPos, data type: int, the position of byte to be operated, ranging from 1 to 8.

Example

Example 1
VAR byte data1 = 130;
VAR bool b1 = BitCheck(data1, 8) //true;
Definite byte data1 and assign it with 130, check if the 8th bit of data1 is 1 and return true if so.

15.4.12.3BitClear

0 15RL Commands

xCoreControl System User Manual 309

Explanation To set a certain bit of byte- or int-type data to 0. The bit starts from 1.

Definition

BitClear(BitData | IntData, BitPos);
BitData, data type: byte, the byte data to be processed.
IntData, data type: byte, the byte data to be processed.
BitPos, data type: int, the position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32
for int data.

Example

Example 1
VAR byte data1 = 255;
BitClear data1 1 //254;
BitClear data1 2 //252;
Define byte-type variable data1 and assign it with 255, Perform BitClear on data1, set the first bit to 0,
and 254 is returned, set the second bit to 0, and 252 is returned.

15.4.12.4BitLSh
Explanation It is used to perform logical left shift on byte-type data.

Definition

Return value, data type: byte, the byte data obtained by performing the left-shift operation.
BitLSh (BitData, ShiftSteps);
BitData, data type: byte, the byte data to be processed.
ShiftSteps, data type: int, the bits selected for the left shift, ranging from 1 to 8.

Example

Example 1
VAR int left_shift = 3;
VAR byte data1 = 38;
VAR byte data2;
data2 = BiLSh(data1, left_shift) //48;
Define byte-type variable data1, and assign it with 38, perform 3 bits left shift on data1, and 48 is
returned.

15.4.12.5BitNeg
Explanation It is used to perform logical negation on byte-type data.

Definition
Return value, data type: byte, the byte data obtained by performing the logical negation.
BitNeg (BitData);
BitData, data type: byte, the byte data to be processed.

Example

Example 1
VAR byte data1 = 38;
VAR byte data2;
data2 = BitNeg(data1) //217;
Define byte-type variable data1, and assign it with 38, perform logical negation on data1, and 217 is
returned.

15.4.12.6BitOr
Explanation It is used to perform logical disjunction (or) on byte-type data.

Definition

Return value, data type: byte, the byte data obtained by performing the logical disjunction.
BitOr (BitData1, BitData2);
BitData1, data type: byte, the byte data 1 to be processed.
BitData2, data type: byte, the byte data 2 to be processed.

Example

Example 1
VAR byte data1 = 39;
VAR byte data2 = 162;
VAR byte data3;
data3 = BitOr(data1, data2); //167
Define the byte-type variable data1 and data2, assign them with the value of 39 and 162, respectively;
perform logical conjunction on data1 and data2, and 167 is returned.

15.4.12.7BitRSh
Explanation It is used to perform the logical right shift on byte-type data.

Definition

Return value, data type: byte, the byte data obtained by performing the right-shift operation.
BitLSh (BitData, ShiftSteps);
BitData, data type: byte, the byte data to be processed.
ShiftSteps, data type: int, the bits selected for the right shift, ranging from 1 to 8.

Example

Example 1
VAR int right_shift = 3;
VAR byte data1 = 38;
VAR byte data2;

0 15RL Commands

310 xCoreControl System User Manual

data2 = BiRSh(data1, right_shift); //4
Define byte-type variable data1, and assign it with 38, perform 3 bits right shift on data1, and 4 is
returned.

15.4.12.8BitSet
Explanation It is used to set a certain bit of byte- or int-type data to 1. The bit starts from 1.

Definition

BitSet (BitData | IntData, BitPos);
BitData, data type: byte, the byte data to be processed.
IntData, data type: byte, the byte data to be processed.
BitPos, data type: int, the position of the bit to be operated, ranging from 1 to 8 for byte data and 1 to 32
for int data.

Example

Example 1
VAR byte data1 = 0;
BitSet (data1,1); //1
BitSet (data1,2); //3
Define byte-type variable data1 and assign it with 255, Perform BitSet on data1, set the first bit to 1, and 1
is returned, set the second bit to 1, and 3 is returned.

15.4.12.9BitXOr
Explanation It is used to perform logical exclusive or on byte-type data.

Definition

Return value, data type: byte, the byte data obtained by performing the logical disjunction.
BitXOr (BitData1, BitData2);
BitData1, data type: byte, the byte data 1 to be processed.
BitData2, data type: byte, the byte data 2 to be processed.

Example

Example 1
VAR byte data1 = 39;
VAR byte data2 = 162;
VAR byte data3;
data3 = BitOr(data1, data2) ;//133
Define the byte-type variable data1 and data2, assign them with the value of 39 and 162, respectively;
perform logical exclusive or on data1 and data2, and 133 is returned

15.4.13String operations
15.4.13.1StrFind

Explanation It is used to find the position of a particular set of characters in the string from a specific location.

Definition

Return value, data type: int, the location of the first matching character. If the location is not found, the
length of the returned string is added by 1.
StrFind (Str ChPos Set [\NotInSet]);
Str, data type: string, the string to be searched.
ChPos, data type: int, the starting position, starting from 1, if the location is off the boundary, an error is
reported.
Set, data type: string, the character set to be matched.
[\NotInSet], identifier, to identify the character that cannot be matched in the character set.

Example

Example 1
VAR int found;
found = StrFind(“Robotics”, 1, “aeiou”); //2
Match from the first character "R", and find the second character "o" in the character set “aeiou”, return
matching location 2.
found = StrFind(“Robotics”, 1, “aeiou” \NotInSet); //1
Match from the first character "R", and find the first character "R" is not in the character set "aeiou",
return matching location 1.

15.4.13.2StrLen
Explanation It is used to obtain the length of the string.

Definition
Return value, data type: int, the current string length, which is longer than or equal to 0.
StrLen (Str);
Str, data type: string, the string that requires the calculation of string length.

Example

Example 1
VAR int num;
num = StrLen(“Robotics”); //8
The length of the string "Robotics" is 8.

0 15RL Commands

xCoreControl System User Manual 311

15.4.13.3StrMap

Explanation
It is used to back up a string, all characters in it are replaced according to the specified mapping
relationship. The mapped characters correspond one by one according to their position, and the characters
that are not mapped remain the same.

Definition

Return value, data type: string, the replaced string.
StrMap (Str, FromMap, ToMap);
Str, data type: string, the original string.
FromMap, data type: string, the index of the mapping.
ToMap, data type: string, the value of the mapping.

Example

Example 1
VAR string str;
str = StrMap(“Robotics”, “aeiou”, “AEIOU”) //RObOtIcs;
Map the string "Robotics", and "aeiou" is respectively mapped to "AEIOU".

Use restrictions: FromMap and ToMap have to match with each other and have to be of the same length.

15.4.13.4StrMatch

Explanation It is used to search in a string, starting at the specified location, search for a particular format or a string,
and return the matched location.

Definition

Return value, data type: int, the position of the first character of the matched string, and if there is no
match, the string length plus one is returned.
StrMatch (Str, ChPos, Pattern);
Str, data type: string, the string to be searched.
ChPos, data type: int, the starting position, and if the location exceeds the length range of the string, an
error is reported.
Pattern, data type: string, the format string to match.

Example

Example 1
VAR int found;
Found = StrMatch(“Robotics”, 1, “bo”) //3;
Search from the first character for "bo" and find a match at the third position, position 3 is returned.

15.4.13.5StrMemb
Explanation It is used to check whether a character in a string belongs to a specified character set.

Definition

Return value, data type: bool, true indicates that the character in the string belongs to the specified
character set. Otherwise, false is returned.
StrMemb (Str, ChPos, Set);
Str, data type: string, the string to be checked.
ChPos, data type: int, the position of the character to be checked; if it exceeds the range of the string, an
error is reported.
Set, data type: string, the character set to be matched.

Example

Example 1
VAR bool memb;
memb = StrMemb(“Robotics”, 2, “aeiou”) //true;
The second character o is a member of the character set "aeiou" and true is returned.

15.4.13.6StrOrder
Explanation It is used to compare two strings and return the Boolean value.

Definition

Return value, data type: bool, when str1<=str2, return true; otherwise, false.
StrOrder (Str1, Str2);
Str1, data type: string, the first string value.
Str2, data type: string, the second string value.

Example

Example 1
VAR bool le;
le = StrOrder(“FIRST”, “SECOND”); //true;
le = StrOrder(“FIRSTB”, “FIRST”); //false

15.4.13.7StrPart
Explanation It is used to truncate a part of a string to generate a new string.

Definition

Return value, data type: string, the truncated string, truncating a string from a specified location with a
specified length.
StrPart (Str, ChPos, Len);
Str, data type: string, the original string of a truncated string.
ChPos, data type: int, the starting position, and if it exceeds the range of the string, an error is reported.

0 15RL Commands

312 xCoreControl System User Manual

Len, data type: int, the length for truncating.

Example

Example 1
VAR string part;
part = StrPart(“Robotics”, 1, 5); //Robot
Truncate the string for a length of 5 bits from position 1 to get "Robot".

15.4.13.8StrSplit
Explanation It is used to split a string into an array of strings by specifying a separator

Definition

Return value, data type: string array, the array of strings obtained by splitting
StrSplit (Str [, separator]);
Str, data type: string, the original string to be split.
Separator, data type: string, a separator. All characters in the string are considered as a separator and can
be defaulted. If no separators exist, space can be considered as the default separator.

Example

string str_arr[4] = StrSplit("test1,test2;test3\test4", "\,;");
The string is split into four substrings (test1 test2 test3 test4).

Use restrictions:
 An error is reported when the input string is blank.
 If the split results do not match the length of the defined string, an error is reported.

15.4.13.9StrToByte
Explanation StrToByte can convert a string into byte type data

Definition

Return value, data type: byte, the conversion result of a string.
StrToByte (Str, [trans]);
Str, data type: string, the string to be converted.
Trans, data type: enumeration, the mathematical binary format of the string. Available parameters include
\Bin (binary), \Okt (octal), \Hex (hexadecimal), \Char (character), and the default (no parameter, decimal)

Example

Example 1
Byte NumBin = StrToByte(“10”, \Bin);
Byte NumOkt = StrToByte(“10”, \Okt);
Byte NumBin = StrToByte(“10”);
Byte NumHex = StrToByte(“10”, \Hex);
The string "10" is converted to byte numbers in binary, octal, decimal, and hexadecimal in order, and the
results are 2, 8, 10 and 16.

Example 2
Byte NumChar = StrToByte(“0”, \Char);
The character "0" is converted to 48 according to the conversion relationship between characters and
ASCII.
Use restrictions: An error will be reported when the input string does not conform to the specified data
format.

15.4.13.10StrToDouble
Explanation StrToDouble can convert a string into double type data

Definition
Return value, data type: double, the conversion result of a string.
StrToDouble (Str);
Str, data type: string, the string to be converted.

Example

Example 1:
Double NumDouble = StrToDouble(“3.1415926”);
Convert string "3.1415926" into double type data.

Use restrictions:
An error will be reported when the input string does not conform to the specified data format.

15.4.13.11StrToInt
Explanation StrToInt can convert a string into Int type data

Definition
Return value, data type: Int, the conversion result of a string.
StrToDouble (Str);
Str, data type: string, the string to be converted.

Example

Example 1
Int NumInt = StrToInt(“99”);
Convert string "99" into Int type data.

0 15RL Commands

xCoreControl System User Manual 313

Use restrictions: An error will be reported when the input string does not conform to the specified data
format.

15.4.13.12StrToDoubleArray
Explanation StrToDoubleArray can convert a large number of strings double into the type of double array data

Definition

Return value, data type: Int, to determine whether the conversion is abnormal. -1: error, 0: normal.
StrToDoubleArray(output, input, spilit);
Output, data type: double array, the output of conversion results
Input, data type: str string, the input of strings
Spilit, data type: str string, a delimiter of Double strings

Example

Example 1
string tmp_ss = "1,2,3,4,5,6,7";
double db_arr[10];
StrToDoubleArray (db_arr, tmp_ss, ",");
// result db_arr = {1,2,3,4,5,6,7,0,0,0}

Use restrictions:
The string allows for an extra terminator at the end
In case of conversion failure or including illegal characters, it will report an error, that is, "The input string
is not in Double form after segmentation"
The data volume of double array should be greater than or equal to that of the data in the string; otherwise,
it will report an error, that is, "The input array size is insufficient, or the array is not a one-dimensional
array"

15.4.14Operators
15.4.14.1Basic operators

15.4.14.1.1Arithmetic operators

Arithmetic operators include:
Operators Application

+ Plus
- Minus
* Multiply
/ Divide

% Modular
arithmetic

-- Decrement
++ Increment

Arithmetic operators support data types of bool, byte, int, and double, and if different types of
variables are added, subtracted, multiplied, and divided, they will trigger implicit conversion.

The examples for arithmetic operators are as follows:
Example 1
VAR int a = 1;
VAR int b = 2;
VAR int c = -b;//Negate
VAR int ac = a * c; //Multiplication

Example 2
The two operators ++ and --, also known as unary operators, are operators that operate on an operand.
RL does not distinguish between pre and post increment or decrement:
x = n++; //Means to add n by 1 and assign the n value to x
x = --n; //Means to subtract n by 1 and assign the new value to x

Example 3
Implicit conversion results of addition, subtraction, multiplication, and division of different types of
variables:

Type 1 Type 2 Result
bool bool bool
bool byte byte

0 15RL Commands

314 xCoreControl System User Manual

bool int int
bool double double
byte byte byte
byte int int
byte double double
int int int
int double double

double double double

15.4.14.1.2Logical operators

Logical operators support the operation of the basic data types, including
Operators Application

&& Logical
conjunction

|| Logical
disjunction

< Less than
> Greater than

<= Less than or equal
to

>= Greater than or
equal to

== Equal to
!= Not equal to

! Take logical
negation

Logic and && expressions are true if the results on both sides are true, and the logic or || expression
is true if one of the conditions of the two sides is true.
Example 1
The examples for other logical operators are as follows:
VAR int res = 1;
while(res < 3) //Compare to determine whether res is less than 3
res++;
endwhile
di5 = !di6; //Take logical negation
VAR int counter = 4;
while(di7&&di8) //Calculate logical conjunction
if(counter == 5) //Whether it equals to

break;
endif

endwhile

15.4.14.1.3Assignment operators

Assignment operators include:
Operators Application

= Assignment
+= Addition assignment
-= Subtraction assignment

*= Multiplication
assignment

/= Division assignment
%= Modulus assignment

The examples for assignment operators are as follows
VAR int num1 = 3;
VAR int num2 = 4;
num1 += num2; //Equivalent to num1 = num1 + num2, then num1 = 7.

0 15RL Commands

xCoreControl System User Manual 315

num1 -= num2; //Equivalent to num1 = num1 – num2, then num1 = -1.
num1 *= num2; //Equivalent to num1 = num1 * num2, then num1 = 12.
num1 /= num2; //Equivalent to num1 = num1 / num2, then num1 = 0.
num1 %= num2; //Equivalent to num1 = num1 % num2, then num1 = 3.

All assignment operations of variables support implicit conversion. When the data types on the left
and right sides of the assignment operation are inconsistent, the interpreter will attempt to trigger an
implicit conversion to enable the program to continue running. When the conversion fails, the
program will report an error and stop.
Bool, Byte, Int, and Double can be converted to each other. IO and register variables are special
forms of the above four variables, and if they are used for assignment operations, they can also
trigger implicit conversions.
If the return value of the function belongs to the above four variables, it can also be used as the right
value of the assignment operation for assignment calculation.

Example 1
int tmp_num = 10.5; // 10
bool tmp_bool = 1; // true
tmp_bool = 0; // false
double tmp_d = 999; // 999.0

Example 2
// Register variables can be directly used to modify ordinary variables
double tmp_num = register0;
// Register variables can be directly used for conditional judgment
WaitUntil(register0 == 10);

Example 3
int mem_ret = StrMemb(“Robotics”, 2, “aeiou”);
// The return value of StrMember is of type bool. If it is necessary to use an int type to receive the
return value,
// The controller will not report an error but will perform an implicit conversion
// true -> 1 ， false-> 0

15.4.14.1.4Other operators

Operators Application
() Parentheses
. Dot operator

The examples for the operators are as follows:
Example 1
VAR int num = arr[1]; //Assign the first element of the array to num
VAR int num2 = (1+2)*3; //Using parentheses can change the order of operations, the value of
num2 here is 9

Example 2
Define a robtarget variable pt1
pt1.trans.x = 200; // Change the x coordinate of the pt1 point to 200 using the "."
operator

Use restrictions:
The "." operator does not support modifications to the A, B, C members of robtarget variables.

15.4.14.2Operation priority

Priority Operato
rs Use form Combinatio

n direction

1
() (Expression)/function name (formal

parameter list)
. Variable name.

2
- -Expression From right

to left

++ ++ Variable name/Variable name
++

0 15RL Commands

316 xCoreControl System User Manual

-- --Variable name/Variable name --
! !Expression

3

/ Expression / Expression From left to
right

* Expression * Expression

% Integer expression / Integer
expression

4
+ Expression + Expression From left to

right
- Expression - Expression

5

> Expression > Expression From left to
right

>= Expression >= Expression
< Expression < Expression
<= Expression <= Expression

6
== Expression == Expression From left to

right
!= Expression != Expression

7 && Expression && Expression From left to
right

8 || Expression || Expression From left to
right

9

= Variable = Expression From right
to left

/= Variable /= Expression
*= Variable *= Expression
%= Variable % = Expression
+= Variable += Expression
-= Variable -= Expression

15.4.15Clock commands
15.4.15.1ClkRead

Explanation It is used to read the value of the clock.

Definition

Return value, data type: double, to return the time interval between the stop time of the clock or the
current time and the start of the clock. The accuracy is 0.001s.
ClkRead (Clock);
Clock, data type: clock, name of the clock.

Example

Example 1
VAR clock clock1;
ClkStart(clock1);
ClkStop(clock1);
VAR double interval=ClkRead(clock1);
interval stores the time interval between start and stop of clock1.

15.4.15.2ClkReset
Explanation It is used to reset a clock. ClkReset guarantees that the count is 0 before using a clock.

Definition ClkReset (Clock);
Clock, data type: clock, name of the clock.

Example

Example 1
VAR clock clock1;
ClkReset (clock1);
Reset clock1.

15.4.15.3ClkStart

Explanation

It is used to start a clock.

When a clock starts, it will continue to count until the clock stops or the program resets. The clock will
continue to operate after the program stops or the robot is powered off.

0 15RL Commands

xCoreControl System User Manual 317

Definition ClkStart (Clock);
Clock, data type: clock, name of the clock.

Example

Example 1
VAR clock clock1;
ClkStart (clock1);
Declare clock1, and start clock1.

15.4.15.4ClkStop

Explanation
It is used to stop a clock.
When the clock stops, it stops counting. After the clock stops, it can be read for the interval, restarted, or
reset.

Definition ClkStop (Clock);
Clock, data type: clock, name of the clock.

Example

Example 1
VAR clock clock1;
ClkStart (clock1);
…
ClkStop (clock1);
Stop clock1.

15.4.16Advanced commands
15.4.16.1RelTool

Explanation
It is used to translate or rotate the spatial position in the tool frame as specified by the current command.
Main difference from Offs: Offs is the offset relative to the work object frame, and RelTool is the offset
relative to the tool frame.

Definition

Return value, data type: robtarget, to return the new pose after the offset.
RelTool(Point, XOffset, YOffset, ZOffset, Rx, Ry, Rz [, Tool, Wobj]);
Point, data type: robtarget, the point to be offset, or the initial point of the offset command.
XOffset, data type: double, offset in the x-direction of the tool frame.
YOffset, data type: double, offset in the y-direction of the tool frame.
ZOffset, data type: double, offset in the z-direction of the tool frame.
Rx, data type: double, the rotation angle around the x-axis of the tool frame.
Ry, data type: double, the rotation angle around the y-axis of the tool frame.
Rz, data type: double, the rotation angle around the y-axis of the tool frame.
Tool, data type: tool, contain tool frame information describing the Point position.
Wobj, data type: wobj, contain work object frame information describing the Point position.

Example

Example 1
p2=RelTool(p1,100,0,30,20,0,0);
Since no tool and work object is specified, tool0 and wobj0 are used by default. Offset point p1 by 100
mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction on the tool frame, and then
rotate 20 degrees around the x-axis. Last assign the new target point position to p2.

Example 2
p2=(RelTool(p1,100,0,30,20,0,0), tool5, wobj6);
Offset point p1 by 100 mm in the x-direction, 0 mm in the y-direction, and 30 mm in the z-direction on
the tool5 tool frame, and then rotate 20 degrees around the x-axis. Last assign the new target point
position to p2.

Example 3
MoveL (RelTool(p1, 100,0,30,20,0,0), v4000, fine, tool2, wobj4);
RelTool is used along with the Move command. As no tool or work object frame is specified, the tool and
wobj of the Move command will be used. Offset point p1 by 100 mm in the x-direction, 0 mm in the
y-direction, and 30 mm in the z-direction on the tool2 tool frame, and then rotate 20 degrees around the
x-axis.

Attention

Auxiliary programming is not supported for the optional parameters (Tool and Wobj) of this command.
The 5-axis models of the xMate CR series may have many unreachable points when using the RelTool
command due to the lack of one orientation DOF. It is necessary to determine the offset based on the
characteristics of reachable orientations (e.g. translation of points is usually reachable where the flange
remains parallel to the base).

15.4.16.2Offs

Explanation
The position offset function, which is used to offset a point in the work object frame specified in the
current command by a distance and return the position value of a new point. The translation offset is
represented by x, y, and z, and the orientation rotation offset is represented by Rx, Ry, and Rz.

0 15RL Commands

318 xCoreControl System User Manual

Definition

Return value, data type: robtarget, the new pose after the offset.
Offs（Point， XOffset， YOffset， ZOffset [, Rx, Ry, Rz] ）
Point, data type: robtarget, the point to be offset, or the initial point of the offset command.
XOffset, data type: double, offset in the x-direction of the work object frame.
YOffset, data type: double, offset in the y-direction of the work object frame.
ZOffset, data type: double, offset in the z-direction of the work object frame.
Rx, data type: double, the rotation angle around the x-axis of the work object frame.
Ry, data type: double, the rotation angle around the y-axis of the work object frame.
Rz, data type: double, the rotation angle around the z-axis of the work object frame.

Example

Example 1
p11=Offs(p10,100,200,300);
Have the point p10 offset 100 mm in the x-direction, offset 200 mm in the y-direction, offset 300 mm in
the z-direction of the work object frame, and assign the position of the new target point to p11.

Attention This command does not support auxiliary programming for the moment.

15.4.16.3ConfL

Explanation

After the command is enabled, the following two items are checked:
1. Check whether the actual joint angle (i.e., cf1−7) reached through the Cartesian path is largely

different from the teaching of the target point. If the difference is too large, the log will display the
prompt, and the user consider whether to reach the target point in such a way.

2. Check whether the actual joint configuration (i.e., cfx value) reached through the Cartesian path is
consistent with the teaching of the target point, and if not, an error will be reported and the
movement will stop.

Example

Example 1
ConfL(on);;
MoveL (p1, v1000 ….);
//If the J6 angle at the P1 teaching position is -5°, the J6 angle may be 355° after the MoveL command is
executed (the difference between the two is +-360°, that is, they are the same position). At this time, the
log will prompt "The difference between the actual point of the turning angle and the set point is too
large", but the movement will not stop.
…
ConfL(off);
MoveL (p1, v1000 ….);
//After the conf check of the Cartesian path is disabled, the robot can move to P1, but the cf1−7 and cfx
values of confdata for the actual point and teaching point are not checked.

Attention

1. The ConfL command corresponds to Cartesian motion commands such as MoveL and MoveC,
without impact on the MoveJ and MoveAbsj, or the conf setting of "Move to".

2. In the case of executing Cartesian motion commands such as linear motion and circular motion, the
robot moves towards the target point with the pose most similar to that in the starting point. At this
point, the angle of the target point will be automatically selected, so the actual turning angle of the
robot at the target point will be different from the angle at the teaching position in some cases. When
the command is enabled, a prompt is given for this situation.

15.4.16.4ConfJ

Explanation

The Cartesian frame corresponds to a set of conf parameters (cf1−7, cfx). The conf data corresponding to
the Cartesian coordinate points manually changed or written by the user may be incorrect, which makes it
impossible for the controller to resolve the path of the target point. But in some scenarios, the user cares
only about the robot's TCP position rather than the orientation. In this case, ConfJ Off can be used to
remove conf limitations of the point and the controller can try to calculate the inverse kinematics closest
to the starting point of the path (the calculation may fail, resulting in a failure of the motion command).
Users can read the introduction to confdata for details of conf.

Example

Example 1
p1.trans.x = ….;
MoveJ (p1, v1000 ….);
//Only the frame is modified, not the confdata parameters. This command is likely to cause the execution
to fail.
…
ConfJ(Off);
MoveJ (p1, v1000 ….);
//After the conf check is disabled, the robot can move to P1, but the orientation is uncertain.

Attention The ConfJ command corresponds to MoveJ, without impact on the other motion commands, or the conf
setting of "Move to".

0 15RL Commands

xCoreControl System User Manual 319

15.4.16.5Conf

Explanation
Effect of unified ConfL and ConfJ on/off:
Conf on: equivalent to ConfL on and ConfJ on
Conf off: equivalent to ConfL off and ConfJ off

Example

Example 1
Conf(on);
MoveL (p0, v1000 …);
MoveJ (p1, v1000 ….);
//Effect equivalent to the following commands:
ConfL (on);
ConfJ (on);
MoveL (p0, v1000 …);
MoveJ (p1, v1000 ….);

15.4.16.6VelSet

Explanation

The VelSet command allows for adjusting maximum motion speed for smoother motion when the robot is
handling fragile objects. Instead of being constant, the maximum velocity of each joint keeps changing
with load, body orientation, and other factors when the robot is moving. The VelSet command scales the
maximum velocity capability curve for a specific task path, and the scaled maximum velocity capability
curve is also a changing curve.

Definition
VelSet (gain);
gain, data type: int, the maximum velocity capacity is specified in percentage, ranging from 1% to 100%,
where 100% means the maximum acceleration. The robot reports an error when going over the limit.

Example
Example 1
VelSet (50);
Set the maximum velocity capability to half of the robot's default maximum velocity.

Attention

1. The VelSet command only affects the motion commands of the corresponding RL project, instead of
JOG, move to, rapid motion, and other non-project functions.
2. The VelSet function will interrupt the turning zone. Please do not insert VelSet commands between the
motion commands that require a turning zone.
3. The difference between the VelSet command and the program running rate adjustment slide: the
program running rate adjustment slide modifies the user's expected velocity, for example, motion
command V4000, under 50% slide control, equals a user's expected velocity of V2000. But if the robot is
at its limits, the actual maximum velocity of this motion command is only V1000, then the actual motion
velocity of the robot does not change regardless of whether the velocity slide is at 50% or 100% because
both V2000 and V4000 are above V1000. Changing the expected velocity during this range will not
impact the actual execution velocity; on the contrary, VelSet 50 does not change the user's expected
velocity but reduces the actual maximum velocity of the motion command by 50% during the motion
planning process. Under the same motion command, the actual motion velocity of the robot will be cut to
half from V1000 to V500. The user should identify the difference between these two functions.
4. Speed automatically reverts to the default (100%) during the following operations:
 RL program is reset manually (PP to Main)
 A new RL program is loaded

15.4.16.7AccSet

Explanation The AccSet command allows for adjusting acceleration for smoother movement when the robot is
handling fragile objects.

Definition

AccSet (acc, ramp);
Acc, data type: int, the acceleration is specified as a percentage of the system preset value, ranging from
30% to 100%, where 100% means the maximum acceleration, beyond which the robot will stop and report
an error.
Ramp, data type: int, the Jerk is specified as a percentage of the system preset value, ranging from 30% to
100%, where 100% means the maximum jerk, beyond which the robot will report an error.

Example
Example 1
AccSet (50,50);
Acceleration and jerk are set to half of the default.

Attention
Acceleration automatically reverts to the default (100%) during the following operations:
 RL program is reset manually (PP to Main)
 A new RL program is loaded

15.4.16.8MotionSup
Explanation It is used to turn on and off Collision Detection.

0 15RL Commands

320 xCoreControl System User Manual

Definition

MotionSup(type [, level, event]);
Type, data type: keyword, On: turn on, Off: turn off
Level, data type: int, the additional parameter for MotionSup On to modify the collision detection
sensitivity percentage, range: [1,200]
Event, data type: string, the additional parameter for MotionSup On to set the behavior after collisions
 "softstop" indicates it stops compliantly

Example

Example 1
MotionSup(On);
//... other commands
MotionSup(Off);
After enabling collision detection, users can execute other commands and turn off collision detection by
MotionSup Off after the completion of commands

Example 2
MotionSup(On, 200, “softstop”);
Users enable collision detection and set the detection sensitivity percentage to 200% and the behavior
triggered to a compliant stop after detecting a collision.

15.4.16.9MotionSupPlus

Explanation MotionSupPlus (Motion Supervision Plus) is used to adjust the robot's joint collision detection sensitivity
in the RL program at any time.

Definition MotionSupPlus(x1,x2,x3,x4,x5,x6,x7);
x1 to x7, the collision detection sensitivity in % for joints 1-7, respectively.

Example

Example 1
MotionSupPlus(5,20,7,20,6,20,5);
Indicates the sensitivity of the 7 joints to be 5, 20, 7, 20, 6, 20, 5, respectively.

Note:
For 6-axis robots, 7 parameters should be set too, where the first 6 parameters correspond to joints 1-6.
This command is available for cobots and six-axis industrial robots, but not three- and four-axis industrial
robots.

15.4.16.10MotionSupJointTrq

Explanation MotionSupJointTrq (Motion Supervision Joint Torque) Motion supervision is used to adjust the driving
torque limits of robot joints at any time in the RL program.

Definition MotionSupJointTrq(x1,x2,x3,x4,x5,x6,x7);
x1 to x7 indicates the driving torque limits of joint 1 to joint 7 respectively, in N.m.

Example

Example 1
MotionSupJointTrq (100,91,59,14,14,14,5);
It indicates that the driving torque limits of 7 joints are 100 N.m, 91 N.m, 59 N.m, 14 N.m, 14 N.m, 14
N.m, and 5 N.m, respectively.

Note:
For 6-axis robots, 7 parameters should be set too, where the first 6 parameters correspond to joints 1-6.
This command is available for cobots and six-axis industrial robots, but not three- and four-axis industrial
robots.

15.4.16.11BreakLookAhead

Explanation

This command informs the control system to cancel the lookahead and force the cancellation of the
turning zone between the previous motion command and the next motion command. The robot TCP will
move to the target point position of the previous motion command and then move to the next point
without the turning zone. The program pointer will also wait for the TCP to move to the target point
position of the previous motion command before continuing the lookahead scan.

Definition The command includes no parameters and no return value

Example

Example 1
MoveL(P1,v1000,z50,tool0);
BreakLookAhead
MoveL(P2,v1000,z50,tool0);
MoveL(P3,v1000,z50,tool0);
1) The turning zone of point P1 is set to z50. Because of the BreakLookAhead command, the lookahead
and the turning zone will be canceled, and the robot TCP will move exactly to point P1 and then to P2.
There is no BreakLookAhead command between P2 and P3, so the robot will look ahead at P2 and pass
the z50 turning zone before moving to P3.
2) The BreakLookAhead command has the same effect as the wait 0 command.

15.4.16.12GetRobotMaxLoad

0 15RL Commands

xCoreControl System User Manual 321

Explanation It is used to get the maximum load value of the current robot model.

Definition Ret = GetRobotMaxLoad();
Ret, return value, data type: int, maximum payload

Example
int maxload = GetRobotMaxLoad();
print(maxload);
With xMate 7 as an example, return 7.

15.4.16.13GetRobotState

Explanation
It is used to get the current operating state of the control system. Use the 4-byte bit information to
represent the state of the control system, including fault, emergency stop, safety gate, operation mode,
servo mode, and motion state, as shown in following table.

Definition Ret = GetRobotState();
Ret, return value, data type: byte array, use four-byte types to represent the robot state.

Example

Example 1
byte st[4] = GetRobotState();
print(st);
Return {0,5,0,0}. According to the table, the current state is: no fault, motor powered on, automatic mode,
robot motion state, servo is in position mode.

S/N State bits Meaning
1 Byte[1].bit[1] 1: Control system is not authorized
2 Byte[1].bit[2] 1: Control system recoverable faults
3 Byte[1].bit[3] 1: Control system fatal error
4 Byte[1].bit[4] 1: Servo system failure
5 Byte[1].bit[5] 1: Servo system fatal failure
6 Byte[1].bit[6] 1: Emergency stop
7 Byte[1].bit[7] 1: Safety gate stop
8 Byte[1].bit[8] Reserved
9 Byte[2].bit[1] Power-on state, 0: motor is not powered on; 1: motor is

powered on
10 Byte[2].bit[2] Robot motion state, 0: idle; 1: in motion
11 Byte[2].bit[3] Operation mode, 0: manual mode; 1: automatic mode
12 Byte[2].bit[4] Servo mode, 0: position mode; 1: torque mode
13 Byte[2].bit[5] Reserved
14 Byte[2].bit[6] Reserved
15 Byte[2].bit[7] Reserved
16 Byte[2].bit[8] Reserved
17 Byte[3] Reserved
18 Byte[4] Reserved

15.4.16.14AutoIgnoreZone
Explanation It is used to specify whether to allow the control system to automatically ignore the turning zone.

Definition

AutoIgnoreZone (true/false);
true: Allow the control system to automatically ignore the turning zone (This is also the default state of
the control system);
false: Do not allow the control system to automatically ignore the turning zone

Lookahead Distance

As shown above: The robot runs two MoveL commands with a z50 turning zone in between. During the
motion, the robot needs lookahead from its current position for smooth and safe motion. For example,
when the robot moves to p0, it looks ahead to P1. In this process, the control system pre-processes the

0 15RL Commands

322 xCoreControl System User Manual

information between the two points.
As the robot moves forward, the lookahead end point also moves forward. At a certain point, the
lookahead end point p1 coincides with p2, the start point of the turning zone. If the control system has
received the second motion command, it can generate a turning zone properly and control the robot to
move along the predetermined trajectory; if the control system fails to receive the second motion
command, it cannot generate the turning zone, and it will process the turning zone according to the
AutoIgnoreZone command status. See below for the logic:
AutoIgnoreZone true: Instead of waiting for the second motion command, the control system will cancel
the turning zone and control the robot to move directly toward P3.
AutoIgnoreZone false: The control system will wait for the second motion command, during which the
robot will slow down until the turning zone trajectory is generated. If the robot fails to receive the second
motion command when reaching P2, the robot will stop moving and report an error through HMI.
The failure of the robot to receive the second motion command timely is often a result of too many
non-motion commands between two motion commands, e.g.:

Many print commands are added between two motion commands, and it takes a long time for the control
system to receive the second motion command after the first one is processed.

Example

Example 1
AutoIgnoreZone(true);
MoveL(p3,v1000,z50,tool0);
MoveL(p4,v1000,fine,tool0);
Allow the control system to automatically ignore the turning zone

Example 2
AutoIgnoreZone(false);
MoveL(p3,v1000,z50,tool0);
MoveL(p4,v1000,fine,tool0);
Do not allow the control system to automatically ignore the turning zone

15.4.16.15MotionWaitAtFinePoint true/false

Explanation

When the robot is stationary and the user clicks Start, the control system will look ahead a certain distance
according to the lookahead parameter before starting the robot. This command sets whether the robot
starts moving immediately when the lookahead coincides with a fine point.
Fine point: the target point without a turning zone, i.e. a target point with the turning zone parameter set to
fine.

Definition

MotionWaitAtFinePoint(true/false);
MotionWaitAtFinePoint true: The control system controls the start of the robot strictly according to the
lookahead parameters. The robot only starts to move when the lookahead distance reaches the set value of
the lookahead parameter or the lookahead of all motion commands is completed. In this state, the control
system can guarantee the set lookahead distance.
MotionWaitAtFinePoint false: The control system does not strictly follow the lookahead parameters, and
the robot starts moving immediately when the lookahead coincides with the fine point. In this state, the
robot can still start smoothly when the program logic gets extremely complicated, but the lookahead
distance cannot be guaranteed.
Default: MotionWaitAtFinePoint false

Example

Example 1
MotionWaitAtFinePoint(true);
MoveL(p1,v1000,fine,tool0);
MoveL(p2,v1000,fine,tool0);
MoveL(p13v1000,fine,tool0);
MoveL(p1,41000,fine,tool0);
MoveL(p1,51000,fine,tool0);
When the control system looks ahead to p1, it does not start the robot immediately, but checks whether the
current lookahead distance has reached the set length before deciding whether to start the robot.

Example 2
MotionWaitAtFinePoint(false);
MoveL(p1,v1000,fine,tool0);
MoveL(p2,v1000,fine,tool0);

0 15RL Commands

xCoreControl System User Manual 323

MoveL (p3,v1000,fine,tool0);
MoveL (p4,v1000,fine,tool0);
MoveL (p5,v1000,fine,tool0);
When the control system looks ahead to p1, it immediately starts the robot, instead of checking whether
the current lookahead distance has reached the set length.

15.4.16.16IgnoreOverride

Explanation

In scenarios where welding, gluing, and other processes have strict requirements for the motion speed
along the path, the command is developed with the hope of the motion speed of the process section not
being affected by the global speed. This command can temporarily block the influence of the rate slider on
motion commands, so that a specific segment of motion commands and trajectories is not affected by the
global speed.
This command supports performance in both automatic and manual modes. In manual mode, the motion
speed is limited by v250. If the speed exceeds v250, it moves at v250. In automatic mode, it moves at the
desired speed.

Definition

IgnoreOverride(On/Off);
IgnoreOverride On indicates that subsequent motion commands are not affected by the rate slider, and
IgnoreOverride Off has the opposite effect.

Example

Example 1
MoveJ (p1, v1000 ….);//Affected by slider speed
IgnoreOverride(On);
MoveJ (p2, v1000 ….);//Unaffected by slider speed
MoveJ (p3, v1000 ….);//Unaffected by slider speed
IgnoreOverride(Off);
MoveJ (p4, v1000 ….);//Affected by slider speed

Example 2 (manual mode)
IgnoreOverride(On);
MoveJ (p2, v1000 ….);//Unaffected by slider speed and moving at the speed of v250
MoveJ (p3, v100 ….);//Unaffected by slider speed and moving at the speed of v100
IgnoreOverride(Off);

Example 3 (automatic mode)
IgnoreOverride(On);
MoveJ (p2, v1000 ….);//Unaffected by slider speed and moving at the speed of v1000
MoveJ (p3, v100 ….);//Unaffected by slider speed and moving at the speed of v100
IgnoreOverride(Off);

Attention

Affected motion commands: MoveAbsJ, MoveJ, MoveL, MoveC, MoveCF, MoveT, SearchL, SearchC,
TrigL, TrigC, and TrigJ.
The command is not immediately executed and does not interrupt the turning zone.
It can only be used in motion tasks and cannot be used in Inzone; otherwise, an error will be reported.

15.4.16.17SingAreaLockAxis4
Explanation This command indicates the use of locking the 4-axis method to avoid robot wrist singularities.

Definition

SingAreaLockAxis4(on/off);
SingAreaLockAxis4 on indicates the enabling of the 4-axis locking to avoid wrist singularity function. It
should be noted that this function can only be enabled when the 4-axis of the robot is at 0° or ±180°. It is
necessary to ensure that the 4-axis is at the target point of the previous motion command of
SingAreaLockAxis4 on or that the 4-axis of the robot is already at the above angle to ensure normal
program operation, otherwise, an error will be reported.
Off, the function is turned off.
Note: The Cartesian motion command between SingAreaLockAxis4 on and SingAreaLockAxis4 off
adopts a special interpolation method for its pose, without changing the motion angle of the 4-axis. Any
motion command attempting to change the 4-axis angle will cause an error. At the same time, this
command is designed as a blocking command, which will interrupt the turning zone between the front and
rear motion commands of SingAreaLockAxis4.
The current version is applicable to industrial standard six-axis series (XB, NB models) and collaborative
xMateCR, xMateSR series (excluding 5-axis models).
This command is not supported when full DH compensation is enabled.

Example

Example 1
MoveAbsJ(p1,v1000,z50,tool0);
SingAreaLockAxis4(on);
MoveL(p2,v1000, z50,tool0);
MoveL(p3,v1000, z50,tool0);

0 15RL Commands

324 xCoreControl System User Manual

SingAreaLockAxis4(off);
MoveL(p5,v1000, z50,tool0);
Point position p1 needs to ensure that the 4-axis angle is 0° or ±180°. When running to
SingAreaLockAxis4, the 4-axis locking for wrist singularity avoidance function is enabled. The MoveL
p2 and MoveL p3 will adopt the special interpolation method for their poses to maintain the 4-axis angle
unchanged. SingAreaLockAxis4 off indicates to close the function.

15.4.16.18SpeedRefresh
Explanation It is used to override the speed value in the current motion program task.

Definition
SpeedRefresh(override);
override, data type: int, value range: [1%, 100%], if the speed override value exceeds the limit range, the
robot will report an error.

Example
Example 1
SpeedRefresh(70);
It indicates the current speed override value is set to 70%

Attention

1. When executing pptomain, pptofunc, cursor movement, reloading the project, or entering/exiting
demo mode, the speed value set through SpeedRefresh will be cleared and restored to the program
running speed set on the teach pendant interface.

2. Priority note: If a speed value is set through SpeedRefresh, the speed specified by this command
shall prevail; if the robot's operating speed is manually adjusted after the SpeedRefresh command is
executed (e.g., by dragging the speed slider on the teach pendant), the manually adjusted speed shall
prevail thereafter.

3. The SpeedRefresh command takes effect in turning zones.
4. The SpeedRefresh command can set a speed value that exceeds the maximum program speed

limit in manual mode or the initial maximum program speed in automatic mode. Use this command

with caution. (When running an RL program in Automatic mode, if pause is clicked and switched to

manual mode, then the "Run" button is clicked to continue execution, the program running speed at
this time will take the smaller value between the "program speed limit in manual mode" and the

"speed value set through SpeedRefresh")
5. The speed override value set through SpeedRefresh will not be immediately completed, since there

will be a certain time lag between issuing commands and the speed impact on the physical robotic
arm.

15.4.16.19CSpeedOverride
Explanation It indicates the current speed override value that users read

Definition Ret = CSpeedOverride();
Ret Data type: int The value range is 1%−100% of the speed override value

Example

Example 1
int override = CSpeedOverride();
print(override);
If the current speed override value is 70%, it will return to 70

15.4.16.20SingAreaJointWay

Explanation

It indicates the use of joint space trajectory interpolation to avoid singularities in Cartesian commands.
The Cartesian motion command between SingAreaJointWay on and SingAreaJointWay off will be
automatically detected by the control system for any singularity. If the trajectory does not contain
singularities, it will move in the same way as a normal trajectory. If it contains singularities, it will move
in a unique pattern specific to the mode. See below for details:

As shown in the above figure, for the Cartesian trajectory P0P1 with singularities, the control system
detects the singularity Psingular and adds two points, Pcut1 and Pcut2, around the singularity Psingular, to

0 15RL Commands

xCoreControl System User Manual 325

the original trajectory. The original trajectory is divided into three parts: P0Pcut1, Pcut1Pcut2, and
Pcut2P1. Among them, P0Pcut1 and Pcut2P1 are still in the original Cartesian trajectory, but Pcut1Pcut2
uses a joint space trajectory (MoveAbsJ) instead of the original trajectory, so that it can traverse the
singularity. The three trajectory segments are smoothly transitioned using a turning zone, and the turning
radius of the turning zone can be set, which is the zone parameter in the command.
The motion of robot near singularities usually involves a large range of joint angles, so when using this
command, it is necessary to confirm whether the robot's motion trajectory meets the requirements.
Note: The current version is applicable to industrial standard six-axis series (XB, NB models).

Definition

SingAreaJointWay(on/off,zone);
on/off, to indicate that the joint interpolating singularity is enabled or disabled.
Zone, to indicate the radius of the turning zone for the three trajectory segments P0Pcut1, Pcut1Pcut2, and
Pcut2P1 after cutting, as shown in the above figure, referring to the definition of the turning zone.

Example

Example 1
MoveAbsJ(p1,v1000,z50,tool0);
SingAreaJointWay(on,50);
MoveL(p2,v1000, z50,tool0);
MoveL(p3,v1000, z50,tool0);
SingAreaJointWay(off);
MoveL(p5,v1000, z50,tool0);
In the above commands, SingAreaJointWay on,50 enables singularity avoidance and specifies an internal
turning radius of 50 mm for singularity avoidance. SingAreaJointWay off disables singularity avoidance,
and the motion commands in between will use the method of joint interpolating singularity avoidance for
motion.

15.4.16.21SingAreaWrist

Explanation

This command indicates using sacrifice orientation to avoid singularities in Cartesian commands.
The Cartesian motion commands between SingAreaWrist on and SingAreaWrist off both use sacrifice
orientation to move. In this case, the robot tool follows the correct and precise trajectory motion, but the
shape of the robot's wrist will be altered. When the singularity is not traversed, the above situation will
also occur.
The robot uses sacrifice orientation to move, and the wrist orientation of the robot may have a large range
of motion. Therefore, when using this command, it is necessary to confirm whether the robot's motion
trajectory meets the requirements.
Note:
The current version is applicable to industrial standard six-axis series (XB, NB models) and collaborative
xMateCR, xMateSR series.
This command is not supported when full DH compensation is enabled.

Definition
SingAreaWrist(on/off, limit);
on/off, to indicate that the sacrifice orientation for singularity avoidance is enabled or disabled.
Limit, the value in degrees that represents the maximum allowable sacrifice orientation.

Example

Example 1
MoveAbsJ (p1,v1000,z50,tool0);
SingAreawrist (on,30);
MoveL (p2,v1000, z50,tool0);
MoveL (p3,v1000, z50,tool0);
SingAreaWrist off;
MoveL (p4,v1000, z50,tool0);
In the above commands, SingAreaWrist on,30 enables singularity avoidance and specifies the maximum
sacrifice orientation of 30 degrees for singularity avoidance. SingAreaWrist off disables singularity
avoidance, and the motion commands in between will use the method of singularity avoidance for motion.
Please note that the turning zone between p1 and p2 and between p2 and p3 can be generated normally,
while the turning zone between p3 and p4 cannot be generated.

Attention

It can only be used for linear motion, not for curved motion.
When using the sacrifice orientation for singularity avoidance function, the teaching point will be changed
when it is within the singularity range. The wrist orientation during motion may sometimes differ from the
taught orientation, not only at the teaching points where singularities are traversed, but also potentially at
subsequent teaching points.
The motion of the orientation near the singularity may differ between single-step motion and continuous
motion.

15.4.16.22SetRobotJointsMaxAcc

Explanation
It is used to dynamically modify the maximum acceleration of the robot joint. When the robot needs to
magnify the maximum acceleration of the joint to raise the takt and increase the robot's motion speed, the
maximum acceleration of each joint can be set by this command. The effect of this command is consistent

0 15RL Commands

326 xCoreControl System User Manual

with the "maximum joint acceleration" under the motion parameters set on HMI, and this command is
available for a specific motion.

Definition SetRobotJointsMaxAcc(jointval1, jointval2, jointval3, jointval4, jointval5, jointval6, jointval7);
jointval1−7, data type: double/int, maximum acceleration of the joint, unit: °/s2.

Example Example 1
SetRobotJointsMaxAcc (80000.0, 70000.0, 70000.0, 150000.0, 150000.0, 20000.0, 20000.0);

Attention When there is a turning zone between the two motion commands, the turning zone is generated according
to the constraints of the smaller one between the maximum joint accelerations.

15.4.16.23SetRobotJointsMaxJerk

Explanation

It is used to dynamically modify the maximum jerk of the robot joint. When the robot needs to magnify
the maximum jerk of the joint to raise the takt and increase the robot's motion speed, the maximum jerk of
each joint can be set by this command. The effect of this command is consistent with the "maximum joint
jerk" under the motion parameters set on HMI, and this command is available for a specific motion.

Definition SetRobotJointsMaxJerk(jointval1, jointval2, jointval3, jointval4, jointval5, jointval6, jointval7);
jointval1−7, data type: double/int, maximum jerk of the joint, unit: °/s3.

Example Example 1
SetRobotJointsMaxJerk (30000.0, 27000.0, 27000.0, 50000.0, 40000.0, 60000.0, 60000.0);

Attention When there is a turning zone between two trajectory segments, the turning zone is generated according to
the constraints of the smaller one between the maximum joint accelerations;

15.4.16.24ResetJointKineLimit

Explanation
It is used to reset the maximum speed and maximum acceleration of the joint to the original value, with
SetRobotJointsMaxAcc and SetRobotJointsMaxJerk. After it takes effect, the effect of the above
commands will be cleared.

Definition ResetJointKineLimit();
No parameters.

Example Example 1
ResetJointKineLimit();

15.4.16.25SetTransmissionOverloadParams

Explanation

It is used to dynamically modify the driving overload coefficient of the robot. When the robot needs to
magnify the driving overload coefficient of the joint properly to raise the takt and increase the robot's
motion speed, the driving overload coefficient of each joint can be set by this command. The effect of this
command is consistent with the "overload coefficient" under the body parameters set on HMI, and this
command is available for a specific motion.

Definition
SetTransmissionOverloadParams (jointval1, jointval2, jointval3, jointval4, jointval5, jointval6,
jointval7);
jointval1−7, data type: double/int, driving overload coefficient of the joint.

Example Example 1
SetTransmissionOverloadParams (0.95, 0.95, 0.95, 0.95, 1.5, 0.95, 1.0);

Attention When there is a turning zone between two trajectory segments, the turning zone is generated according to
the constraints of the smaller one between the transmission overload coefficients;

15.4.16.26ResetTransmissionOverloadParams

Explanation
Used to restore the robot's transmission overload coefficient to its original value; to be used in conjunction
with the SetTransmissionOverloadParams command; the effect of this command is cleared after taking
effect;

Definition ReSetTransmissionOverloadParams();
No parameters.

Example Example 1
ReSetTransmissionOverloadParams();

15.4.16.27SetAccRampTime

Explanation
It is used to set the acceleration ramp time, that is, the time it takes for the robot to increase its
acceleration from a minimum to a maximum. The smaller the value, the faster the robot accelerates, and
vice versa.

Definition SetAccRampTime (ramptime);
ramptime, data type: double/int, acceleration ramp time, range: [0.02, 0.5], unit: s.

Example Example 1
SetAccRampTime (0.15);

0 15RL Commands

xCoreControl System User Manual 327

15.4.16.28ResetAccRampTime
Explanation It is used to reset the acceleration ramp time, with the SetAccRampTime.

Definition ResetAccRampTime ();
No parameters;

Example Example 1
ResetAccRampTime();

15.4.16.29SetVarValue
Explanation It is used to assign the variables in the turning zone, and the assignment is not triggered for lookahead.

Definition

SetVarValue(var1, var2);
Assign var2 to var1.
var1: data type: byte, int, double, bool, and writable register variable with no function code bound.
var2: data type: byte, int, double, bool, IO variable, register variable, function return value, and
expression.

Example

Example 1

//The robot is currently located in the p0.
MoveL(p1);
SetVarValue(var1, var2); // Assign var2 to var1 at the start point of the turning zone
MoveL(p2);

Attention

The implicit conversion occurs during the assignment.
int a=1;
double b=20.22;
SetVarValue(a, b);
For example, after the assignment, the variable a is 20.

15.4.16.30SetStopAccRampTime

Explanation

It is used to set the acceleration ramp time during the final stop phase. For target points without a turning
zone, this is the time it takes for the robot to increase its acceleration from a minimum to 0 during the final
stop phase. The smaller the value, the faster the robot stops, and vice versa. If the acceleration ramp time
is greater than the acceleration ramp time during the final stop phase, the robot will use the longer
acceleration ramp time for stopping.

Definition
SetStopAccRampTime(ramptime);
ramptime, data type: double/int, acceleration ramp time during the final stop phase, range: [0.01, 1], unit:
s.

Example Example 1
SetAccRampTime(0.15);

15.4.16.31ResetStopAccRampTime
Explanation It is used to reset the acceleration ramp time during the final stop phase, with the SetStopAccRampTime.

Definition ResetStopAccRampTime();
No parameters;

Example Example 1
ResetStopAccRampTime();

15.4.16.32MotionSupJointTrq

Explanation The motion supervision is used to adjust the maximum output torque of each joint in the RL program at
any time.

Definition MotionSupJointTrq (J1,J2,J3,J4,J5,J6,J7);

Example Example 1
MotionSupJointTrq(50,50,70,50,60,60,50);

0 15RL Commands

328 xCoreControl System User Manual

15.4.16.33PathRecStart

Explanation

Start recording the robot's path. It is a stop lookahead command.
After executing PathRecStart to initiate path recording, the supported motion types for recording include
MoveL, MoveJ, MoveAbsJ, MoveC, TrigL, TrigC, and TrigJ. During path recording, the execution of
MoveC and TrigC commands cannot be interrupted; otherwise, the target points cannot be recorded. If
MoveC or TrigC commands are interrupted, an error will be reported and execution will stop.

Definition PathRecStart();

Example

MoveL(p1,v1000,z50,tool0,wobj0);
PathRecStart();
MoveL(p2,v1000,z50,tool0,wobj0);
When lookahead reaches PathRecStart, it stops lookahead and waits for the motion before PathRecStart to
complete before executing PathRecStart. Motion commands after this command will be recorded.

15.4.16.34PathRecStop
Explanation Stop recording the robot's path and clear the recorded path data. It is a stop lookahead command.
Definition PathRecStop();

Example

MoveL(p1,v1000,z50,tool0,wobj0);
PathRecStop();
MoveL(p2,v1000,z50,tool0,wobj0);
When lookahead reaches PathRecStop, it stops lookahead and waits for the motion before PathRecStop to
complete before executing PathRecStop. After this command, path recording will cease and the recorded
path data will be cleared.

15.4.16.35PathRecBwd

Explanation

Make the robot move backward along the recorded path. It is a stop lookahead motion command, and the
motion of PathRecBwd will not be recorded.
If there are commands that interrupt lookahead between motion instructions, when executing the recorded
path, the turning zone of the trajectory before the lookahead interrupting command will be set to z0.
After executing PathRecStart to initiate path recording, if an interrupt is triggered, the PathRecBwd
command in the interrupt must precede other motion commands; otherwise, an error will be reported and
execution will stop.
PathRecBwd cannot be interrupted. If an interrupt is triggered while executing PathRecBwd, an error will
be reported and execution will stop.

Definition PathRecBwd();

Example

MoveAbsJ(j1,v1000,z50,tool_weld);
PathRecStart();
MoveL(p1,v1000,z50,tool0,wobj0);
MoveAbsJ(j2,v1000,z50,tool_weld);
PathRecBwd();
MoveL(p2,v1000,z50,tool0,wobj0);
Two motion commands are recorded after PathRecStart. When executing PathRecBwd, the robot will
perform path backtracking, moving from j2→p1→the robot's position when executing PathRecBwd (j1)

15.4.16.36PathRecFwd

Explanation

Make the robot move backward to the position where PathRecBwd was executed. It is a stop lookahead
motion command, and the motion of PathRecFwd will not be recorded.
If there are commands that interrupt lookahead between motion instructions, when executing the recorded
path, the turning zone of the trajectory before the lookahead interrupting command will be set to z0.
After executing PathRecStart to initiate path recording, if an interrupt is triggered, the PathRecFwd
command in the interrupt must not be followed by any motion commands; otherwise, an error will be
reported and execution will stop.
PathRecFwd cannot be interrupted. If an interrupt is triggered while executing PathRecFwd, an error will
be reported and execution will stop.

Definition PathRecFwd();

Example

MoveAbsJ(j1,v1000,z50,tool_weld);
PathRecStart();
MoveL(p1,v1000,z50,tool0,wobj0);
MoveAbsJ(j2,v1000,z50,tool_weld);
PathRecBwd();
PathRecFwd();
When executing PathRecBwd, the robot performs path backtracking [j2->p1->robot's position when
executing PathRecBwd (j1)]. At this point the robot is at position j1. When executing PathRecFwd, the
robot will move from j1->p1->j2 back to position j2.

15.4.16.37GetRecStartStatus
Explanation Get whether path recording is enabled. The return value is of bool type
Definition GetRecStartStatus();

0 15RL Commands

xCoreControl System User Manual 329

Example bool b1 = GetRecStartStatus();
Get whether path recording is enabled. true if enabled, false if disabled.

15.4.16.38SetMaxMotionJerk

Explanation Set the value of the robot's underlying otgc jerk. The default value is 300. Increasing this value can
achieve faster start/stop effects. The value will be restored to default after pptomain;

Definition SetMaxMotionJerk(Num);
Num: Data type: int/double, greater than 100

Example Example 1
SetMaxMotionJerk(10000);

15.4.16.39VibSuppression

Explanation
Command to set the vibration suppression function switch. During Pptomain, the vibration suppression
function reverts to the state set in the HMI interface (see the vibration suppression function in the
Dynamic settings module in 9.8).

Definition VibSuppression(Type);
Type, data type: keyword, on: turn on, off: turn off

Example

VibSuppression(on);
MoveAbsJ(p1,v500,fine,tool1);
MoveAbsJ(p2,v500,fine,tool1);
MoveAbsJ(p3,v500,fine,tool1);
VibSuppression(off);
MoveAbsJ(p4,v500,fine,tool1);

When executing the VibSuppression(on) command, the controller enables the vibration suppression
function. The movements at subsequent points p1−p3 will be affected by the vibration suppression
function, where robot vibrations during start/stop are suppressed, resulting in improved trajectory
accuracy. When executing the VibSuppression(off) command, the controller disables the vibration
suppression function.

15.4.17Function commands
15.4.17.1CRobT

Explanation

It is used to get the robot pose. When using this function, you need to give the names of the tool and the
work object. Return the pose of the specified tool frame, the current axis configuration information, and
the external axis position.
Note: When using CRobT, the robot should be in the stop state, i.e. the turning zone of the motion
statement before CRobT should be set as fine.

Definition

Return value, data type: robtarget, return the current robot position, orientation, axis configuration data,
and external axis information.
CRobT(Tool， Wobj);
Tool, data type: tool, the tool used when calculating the position.
Wobj, data type: wobj, the work object used when calculating the position.

Example Example 1
p2 = CRobT(tool1， wobj2);

15.4.17.2CJointT

Explanation
CJointT is used to read the current angle of the robot axes and external axes.
Note: When using CJointT, the robot should be in the stop state, i.e. the turning zone of the motion
command before CRobT should be set as fine.

Definition
Return value, data type: jointtarget, rotation axis unit: degree; linear axis unit: mm, to return the current
angle value of the robot axes and the external axes.
CJointT();

Example
Example 1
VAR jointtarget j2;
j2 = CJointT();

15.4.17.3CalcJointT
Explanation It is used to calculate the corresponding joint angle based on the specified robtarget variable

Definition

Return value, data type: jointtarget, to return the positions of joint angle and external axes corresponding
to the input position. The joint angle is in Degrees (°), the external axis of the straight line is in
millimeters (mm), and the rotation of the external axis is in Degrees.
CalcJointT(Rob_Target，Tool，Wobj);
Rob_Target, data type: robtarget, the specified Cartesian space target point. Please note that the tool and

0 15RL Commands

330 xCoreControl System User Manual

work object used in the definition of this point should be consistent with the tool/work object used in the
CalcJointT command, otherwise, it may lead to results error.
Tool, data type: tool, the tool to be used when calculating the joint angle. Note that it needs to be the same
as the one used when defining the robtarget used.
Wobj, data type: wobj, the work object to be used when calculating the joint angle. Note that it needs to be
the same as the one used when defining the robtarget used.

Example
Example 1
jpos2 = CalcJointT(pt1, tool1,wobj2);
Calculate the joint angle when tool1 reaches the pt1 and assign it to jpos2. pt1 is defined under wobj2.

15.4.17.4CalcRobt
Explanation It is used to calculate the corresponding Cartesian space pose based on the specified joint angle.

Definition

Return value, data type: robtarget, to return the Cartesian space pose of a given joint angle.
CalcRobt(Joint_Target，Tool，Wobj);
Joint_Target, data type: jointtarget, the given joint angle for calculating Cartesian space pose.
Tool, data type: tool, the tool used when calculating Cartesian space pose.
Wobj, data type: wobj, the work object used when calculating the Cartesian space pose.

Example

Example 1
pt1 = CalcRobT(jpos1, tool2,wobj);
Calculate the Cartesian pose based on jpos1 and assign it to pt1. pt1 is the pose described by the tool
frame tool2 in the work object frame wobj1.

15.4.17.5Print

Explanation

It is used to print and output the user-defined content to the teach pendant, and the user can then use this
function to debug the program.
The input parameters of the Print function are special, the number of input parameters is unlimited, but
there must be at least one, and each parameter must be a defined variable or a constant.
The system converts these variables into strings and concatenates them in series, and finally outputs them
to the debug window of the program editor. (When the debug window is closed, the information of the
print is still recorded, with the maximum number of 500)

Definition Print(var1， var2，……);

Example

Example 1
counter = 0;
while(true)

counter++;
Print(“counter = ”,counter);

endwhile
After the program is executed, the HMI's program debug window will print the following information:
counter = 1
counter = 2
counter = 3
counter = 4
……

Note: When you need to output a string, you can use double quotation marks "" to include the characters
you want to display, but nested double quotation marks in double quotation marks are not supported.

15.4.17.6Print_f

Explanation

The Print_f function is similar to the Print command, but it outputs the parameters to a specific log, and
users can use this function to record key data and key events of the program. The backup function enables
you to export and view the data. The input parameters of the
Print_f function are unlimited, but there must be at least one, and each parameter must be a defined
variable or a constant.
The system converts these variables into strings and concatenates them in series, and finally outputs them
to the log.

Definition Print_f(var1， var2，……);

Example

Example 1
counter = 0;
while(true)

counter++;
Print_f(“counter = ”,counter);
//Other functions

0 15RL Commands

xCoreControl System User Manual 331

endwhile
After the program is executed, the user log records the changes to the counter, which is available in the
exported rl_log.

……

15.4.17.7PoseMult
Explanation PoseMult is used to calculate the product of two pose changes

Definition

pose3 = PoseMult(pose1，pose2);
pose1, data type, pose, pose 1.
pose2, data type, pose, pose 2.
pose3, return value, data type: pose, the result of pose product.

Example

pose1 represents the pose of frame 1 relative to frame 0, and pose2 the pose of frame 2 relative to frame 1.
Pose3, the pose of frame 2 relative to frame 0 can be calculated through the following method:
VAR pose pose1;
VAR pose pose2;
VAR pose pose3;
...
pose3 = PoseMult(pose1, pose2);

15.4.17.8PoseInv
Explanation PoseInv is used to calculate the inversion of a pose change.

Definition
pose2 = PoseInv(pose1);
pose1, data type, pose, input pose;
pose2, data type, pose, return value.

Example

pose1 represents the pose of frame 1 relative to frame 0, and pose 2 the pose of frame 0 relative to frame
1.
If pose1 is known, pose2 can be calculated through the following method:
VAR pose pose1;
VAR pose pose2;
...
pose2 = PoseInv(pose1);

0 15RL Commands

332 xCoreControl System User Manual

15.4.17.9GetRobABC

Explanation
Get the Euler angle orientation ABC of the Cartesian space point P; the rotation sequence: the initial
frame (the work object frame selected in the motion command) first rotates around its own X axis, then
around its Y axis, and last around its Z axis

Definition

double db_arr[3] = GetRobABC(Point [, A, B, C]);
Point, data type: robtarget, the Cartesian point position used when calculating the position.
A, B, C, data type: double, the return value of the Euler angle orientation for the Cartesian point position.
Return value, data type: double-type three-dimensional array, the return value of the Euler angle
orientation for the Cartesian point position.

Example

Example 1
point0 is a Cartesian point position variable. To convert the Euler angle orientation of the variable to a
Double variable of RL, use the following RL command
VAR double Rob_A;
VAR double Rob_B;
VAR double Rob_C;
// Assign the Euler angle of point0 to Rob_A|B|C
GetRobABC(point0, Rob_A, Rob_B, Rob_C);

Example 2
point0 is a Cartesian point position variable. To generate an array of temporary variables to store the Euler
angles of the Cartesian point position, use the following RL command
double db_arr[3] = GetRobAbc(point0);

15.4.17.10SetRobABC

Explanation
Get the orientation of the Cartesian space point P based on the Euler angles ABC entered; the rotation
sequence: the initial frame (the work object frame selected in the motion command) first rotates around its
own X axis, then around its Y axis, and last around its Z axis.

Definition
SetRobABC(Point , A, B, C);
Point, data type: Cartesian point position, the Cartesian point position whose orientation to be modified.
A, B, C, data type: double, to set the Euler angle orientation for the Cartesian point position, in °.

Example

Example 1
point0 is a Cartesian point position variable. Rotate the point position around the fixed axis of X, Y, and Z
to 30°, 60°, 90° respectively.
SetRobABC(point0, 30, 60, 90);

15.4.17.11RotRobABC

Explanation

Rotate the Euler angles from the existing orientation of the Cartesian space point P based on the Euler
angles ABC entered; the rotation sequence: the initial frame (orientation of the point P) first rotates around
its own X axis, then around its Y axis, and last around its Z axis. The input angles ABC are added to the
existing Euler angles.

Definition
RotRobABC(Point , A, B, C);
Point, data type: Cartesian point position, the Cartesian point position whose orientation to be modified.
A, B, C, data type: double, to set the Euler angle orientation for the Cartesian point position, in °.

Example
Example 1
point0 is a Cartesian point position variable. Rotate the point position around X, Y, and Z to 30°, 60°, 90°.
RotRobABC(point0, 30, 60, 90);

15.4.17.12OpMode
Explanation It is used to obtain the current operating mode of the robot

0 15RL Commands

xCoreControl System User Manual 333

Definition ret = OpMode();
ret, return value, data type: int, 0: undefined, 1: automatic mode, and 2: manual mode.

Example

Example 1
int mode = OpMode();
print(mode);
It returns to 1 if it is currently in automatic mode, and returns to 2 if in manual mode.

15.4.18Register commands
15.4.18.1ReadRegByName

Explanation It is used to read the value of the corresponding register according to the register name

Definition

ReadRegByName(RegData，Value);
RegData, data type: readable register variable, Setup -> Communication -> Register interface function,
register variable.
Value, data type: bool/int/double, the register data will be written into Value, and if the register variable
type mismatches with the interpreter variable, the format will be converted automatically

Example

Example 1
int tmp_int;
ReadRegByName(modbus_int_read[6], tmp_int);
Read the data named modbus_int_read with subscript 6 into tmp_int variable

15.4.18.2WriteRegByName

Explanation

It is used to read the variable value of the corresponding register according to the name of the register. If
the command is performed after the motion command, it will not interrupt the turning zone and be
triggered at the end of the motion command trajectory or at the starting point of the turning zone. See
Example 2 of SetDO for specific usage.

Definition

WriteRegByName(RegData，Value);
RegData, data type: writable register variable, Setup -> Communication -> Register interface function,
register variable.
Value, data type: bool/int/double, the register data will be written into Value, and if the register variable
type mismatches with the interpreter variable, the format will be converted automatically

Example
Example 1
WriteRegByName(modbus_int_write[6], 200);
Write the data of INT 200 to the register corresponding to modbus_int_write[6].

15.4.18.3ReadRegByteByName
Explanation It is used to read the value of the corresponding byte of the register according to its name

Definition

ReadRegByteByName(RegData，Value，byteFlag);
RegData, data type: readable or writable int16/int32 type register, Communication -> Register interface
function, register variable.
Value, data type: byte type variable, the byte value corresponding to the register is read into Value which
must be a variable of byte type.
byteFlag, byte flag, with a value range of 1−4 where 1 is LSB and 4 is MSB.

Example

Example 1
byte tmp_value;
ReadRegByteByName(modbus_reg, tmp_value,1);
The first byte of the register named modbus_reg is read into the tmp_value variable

15.4.18.4WriteRegByteByName

Explanation

It is used to write the value of the corresponding register byte according to the name of the register. If the
command is performed after the motion command, it will not interrupt the turning zone and be triggered at
the end of the motion command trajectory or at the starting point of the turning zone. See Example 2 of
SetDO for specific usage.

Definition

WriteRegByteByName(RegData，Value，byteFlag);
RegData, data type: writable int16/int32 type register, Communication -> Register interface function,
register variable.
Value, data type: byte, the Value data is written into the corresponding byte of the register
byteFlag, byte flag, with a value range of 1−4 where 1 is LSB and 4 is MSB.

Example
Example 1
WriteRegByteByName(modbus_reg, 200,2);
200 data is written into the second byte of modbus_reg.

0 15RL Commands

334 xCoreControl System User Manual

15.4.19End-effector commands
15.4.19.1JodellGripInit

Explanation Initialization command of Jodell electric gripper

Definition

JodellGripInit (ID,wait_time);
ID, data type: Int variable, to establish communication and initialize Jodell electric gripper, parameter ID.
Wait_time, data type: Int variable, to wait for the initialization to complete, wait time threshold, report
error on timeout, in s.

Example

15.4.19.2JodellGripMove
Explanation Motion command of Jodell electric gripper

Definition

JodellGripMove (ID,Pos,Vel,Trq);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Int variable, target position, unitless, range: 0−255.
Vel, data type: Int variable, electric gripper velocity, unitless, range: 0−255.
Trq, data type: Int variable, force detected by electric gripper operation, unitless, range 0−255.

Example

15.4.19.3JodellGripStatus
Explanation It is used to obtain the status of Jodell electric gripper

Definition

JodellGripStatus (ID,Pos,Vel,Trq,Contact);
ID, data type: Int variable, the gripper ID that obtains the movement status of the gripper.
Pos, data type: Int variable, to obtain the electric gripper’s current position, unitless, range: 0−255.
Vel, data type: Int variable, to obtain the electric gripper’s velocity, unitless, range: 0−255.
Trq, data type: Int variable, to obtain the electric gripper’s torque, unitless, range: 0−255.
Contact, data type: Int variable, to obtain the electric gripper’s state, unitless, range 0-255, where bit6-7
indicate whether the electric gripper detects an object.

Bit Name Value/Description

0 gAct 0: the electric gripper is being reset; 1: the electric gripper is in the enabling
state

2 gMode 0: the parameter control mode; 1: the parameterless control mode
3 gGTO 0: stop; 1: moving to the target position

4-5 gSTA 0: the electric gripper is being reset or in the inspection state; 1: being
activated; 2: not used; 3: activation completed

6-7 gOBJ

0: fingers are moving to the specified position; 1: fingers stop due to contact
with an object when opening to reach the specified position; 2: fingers stop
due to contact with an object when closing to reach the specified position; 3:
fingers reach the specified position, but no object is detected.

Example

15.4.19.4JodellSuckInit
Explanation Initialization command of Jodell suction cup

Definition
JodellSuckInit(ID);
ID, data type: Int variable, to initialize the suction cup of this ID and detect if the suction cup of this ID is
connected correctly.

Example

15.4.19.5JodellSuckSet

Explanation The command for Jodell suction cup to operate. When this command is given, the suction cups
immediately start operating according to the set parameters

Definition

JodellSuckSet(ID,CH1_enable,CH1_VacMin, CH1_VacMax, CH1_Waittime, CH2_enable,
CH2_VacMin, CH2_VacMax, CH2_Waittime);
ID, data type: Int variable, the ID of the suction cup being controlled.
CH1_enable, data type: Int variable, whether the first channel of the suction cup is working or not. 1:
working; 0: not working.
CH1_VacMin, data type: Int variable, the minimum vacuum level of the first channel of the suction cup,
range: 0−255. 0 means pure vacuum, and a value over 100 means releasing the suction cup; stop
pumping when the actual vacuum level is lower than this threshold;
CH1_VacMax, data type: Int variable, the maximum vacuum level of the first channel of the suction cup,
range: 0−255. 0 means pure vacuum, and a value over 100 means releasing the suction cup; start pumping
when the actual vacuum level is higher than this threshold;

0 15RL Commands

xCoreControl System User Manual 335

CH1_Waittime, data type: Double variable, timeout value of the first channel of the suction cup;
CH2_enable, data type: Int variable, whether the second channel of the suction cup is working or not. 1:
working; 0: not working.
CH2_VacMin, data type: Int variable, the minimum vacuum level of the second channel of the suction
cup, range 0−255. 0 means pure vacuum, and a value over 100means releasing the suction cup; stop
pumping when the actual vacuum level is lower than this threshold;
CH2_VacMax, data type: Int variable, the maximum vacuum level of the second channel of the suction
cup, range 0-255. 0 means pure vacuum, and a value over 100 means releasing the suction cup; start
pumping when the actual vacuum level is higher than this threshold;
CH2_Waittime, data type: Double variable, timeout value of the second channel of the suction cup;

Example

15.4.19.6JodellSuckStatus
Explanation It is used to obtain the status of Jodell suction cup

Definition

JodellSuckStatus(ID,Vac1,Contact1,Time_Err1,Vac2,Contact2,Time_Err2);
ID, data type: Int variable, the ID of the suction cup whose status is to be obtained.
Vac1, data type: Int variable, current vacuum level of the suction cup’s first channel obtained, range:
0−100.
Contact1, data type: Int variable, current status of the suction cup’s first channel obtained, range: 0−255,
where bit6-7 indicates whether the an object is detected. See the table below for status details.

Bit Name Value/Description

0 gAct 0: the electric suction cup is not enabled; 1: the electric suction cup is
enabled

2 gMode 0: the automatic control mode; 1: the advanced control mode
3 gGTO 0: adjustment stopped; 1: the pressure or vacuum is being adjusted

4-5 gSTA 0: the electric suction cup is not activated; 1 & 2: the electric suction
cup is not used; 3: the electric suction cup is activated

6-7 gOBJ

0: below the minimum air pressure; 1: work object detected and
minimum pressure value reached; 2: work object detected and
maximum pressure value reached; 3: no object detected, object lost or
detached.

Time_Err1, data type: Int variable, whether the suction cup's first channel obtained triggers a timeout
alarm.
Vac2, data type: Int variable, current vacuum level of the suction cup’s second channel obtained, range:
0−100.
Contact2, data type: Int variable, current status of the suction cup’s second channel obtained, range:
0−255, where bit6-7 indicates whether an object is detected. See the table above for status details.
Time_Err2, data type: Int variable, whether the suction cup's second channel obtained triggers a timeout
alarm.

Example

15.4.19.7RMRGMGripInit
Explanation It is the command to initialize Robustmotion RM-RGM series electric grippers.

Definition RMRGMGripInit(ID);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.

Example

15.4.19.8RMCGripInit
Explanation It is the command to initialize Robustmotion RM-C series electric grippers.

Definition RMCGripInit (ID);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.

Example

15.4.19.9RMRGMGripPosMove
Explanation It is the Motion command for the position mode of the Robustmotion RMRGM series electric gripper.

Definition

RMRGMGripPosMove(ID,Pos,Vel,Acc,PCheck);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, target position (mm) with a setting range of -2000.0−2000.0.
Vel, data type: Double variable, running speed of electric grippers (mm/s) with a setting range of
0.01−1000.0.
Acc, data type: Double variable, running acceleration of electric grippers (mm/s^2), with a setting range
of 0.01−2000.0.
PCheck, data type: Double variable, positioning range (mm), with a setting range of 0.01−10.0.

0 15RL Commands

336 xCoreControl System User Manual

Example

15.4.19.10RMCGripPosMove
Explanation It is the Motion command for the position mode of the Robustmotion RMC series electric gripper

Definition

RMCGripPosMove(ID,Pos,Vel,Acc,PCheck);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, target position (mm) with a setting range of -2000.0−2000.0.
Vel, data type: Double variable, running speed of electric grippers (mm/s) with a setting range of
0.01−1000.0.
Acc, data type: Double variable, running acceleration of electric grippers (mm/s^2), with a setting range
of 0.01−2000.0.
PCheck, data type: Double variable, positioning range (mm), with a setting range of 0.01−10.0.

Example

15.4.19.11RMRGMGripTrqMove
Explanation It is the Motion command for the torque mode of the Robustmotion RMRGM series electric gripper.

Definition

RMRGMGripTrqMove(ID,Pos,Vel,Acc,Trq,PCheck,TCheck);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, target distance (mm) with a setting range of -2000.0−2000.0.
Vel, data type: Double variable, running speed of electric grippers (mm/s) with a setting range of
0.01−1000.0.
Acc, data type: Double variable, running acceleration of electric grippers (mm/s^2), with a setting range
of 0.01−2000.0.
Trq, data type: Double variable, positioning range (N.m.), with a setting range of 0.01−100.0.
PCheck, data type: Double variable, positioning range (mm), with a setting range of 0.01−10.0.
TCheck, data type: Double variable, time range (mm), with a setting range of 0.01−1000.0.

Example

15.4.19.12RMCGripTrqMove
Explanation It is the Motion command for the torque mode of the Robustmotion RMC series electric gripper.

Definition

RMCGripTrqMove (ID,Pos,Vel,Acc,Trq,PCheck,TCheck);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, target distance (mm) with a setting range of -2000.0−2000.0.
Vel, data type: Double variable, running speed of electric grippers (mm/s) with a setting range of
0.01−1000.0.
Acc, data type: Double variable, running acceleration of electric grippers (mm/s^2), with a setting range
of 0.01−2000.0.
Trq, data type: Double variable, positioning range (N.m.), with a setting range of 0.01−100.0.
PCheck, data type: Double variable, positioning range (mm), with a setting range of 0.01−10.0.
TCheck, data type: Double variable, time range (mm), with a setting range of 0.01−1000.0.

Example

15.4.19.13RMRGMGripStatus
Explanation It is the acquisition state command of Robustmotion RM-RGM series electric grippers

Definition

RMRGMGripStatus (ID,Pos,Vel,Trq,Reach,Err);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, electric gripper position, in mm.
Vel, data type: Double variable, running speed of electric grippers, in mm/s.
Trq, data type: Double variable, output torque of electric gripper (%), in %.
Reach, data type: bool variable, to indicate whether the electric grippers are in place.
Err, data type: Int variable, error code for electric grippers.

Example

15.4.19.14RMCGripStatus
Explanation It is the state acquisition command of Robustmotion RMC series electric grippers.

Definition

RMCGripStatus (ID,Pos,Vel,Trq,Reach,Err);

ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Double variable, electric gripper position, in mm.
Vel, data type: Double variable, running speed of electric grippers, in mm/s.
Trq, data type: Double variable, output torque of electric gripper (%), in %.
Reach, data type: bool variable, to indicate whether the electric grippers are in place.

0 15RL Commands

xCoreControl System User Manual 337

Err, data type: Int variable, error code for electric grippers.
Example

15.4.19.15RMRGMResetErr
Explanation It is the error command for electric grippers resetting of Robustmotion RM-RGM series.

Definition RMRGMResetErr (ID);
ID, data type: Int variable, the ID of the electric grippers that need to be reset.

Example

15.4.19.16RMCResetErr
Explanation It is the error command for electric grippers resetting of Robustmotion RMC series.

Definition RMCResetErr(ID);
ID, data type: Int variable, the ID of the electric grippers that need to be reset.

Example

15.4.19.17RobotiqGripInit
Explanation It is the command to initialize Robotiq 2F_85 series electric grippers.

Definition RobotiqGripInit(ID);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.

Example

15.4.19.18RobotiqGripGetStatus
Explanation It is the command to get the status of Robotiq 2F_85 series electric grippers.

Definition

RobotiqGripGetStatus(ID，Pos，gOBJ，Err);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Int variable, position of electric grippers, range: 0−255.
gOBJ, data type: Int variable, contact status of electric grippers. 0 indicates the electric gripper is in
motion without contacting any object; 1 indicates object contact occurred during the gripper opening
process; 2 indicates object contact occurred during the gripper closing process; 3 indicates the electric
gripper reached the specified position without contacting any object.
Err, data type: Int variable, error code for electric grippers.

Example

15.4.19.19RobotiqGripMove
Explanation It is the command to move Robotiq 2F_85 series electric grippers.

Definition

RobotiqGripMove(ID，Pos，Vel，Trq);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Int variable, position of electric grippers, range: 3−227.
Vel, data type: Int variable, velocity of electric grippers, range: 0−255.
Trq, data type: Int variable, output torque of electric grippers, range: 0−255.

Example

15.4.19.20DhGripInit
Explanation It is the command to initialize PGI-140-80 series electric grippers.

Definition
DhGripInit(ID Time_wait);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Time_wait, data type: double variable, unit: s, range: 0−10.

Example

15.4.19.21DhGripGetStatus
Explanation It is the command to get the status of DH PGI-140-80 series electric grippers.

Definition

DhGripGetStatus(ID，Pos，gOBJ);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Int variable, position of electric grippers, range: 0−1000.
gOBJ, data type: Int variable, contact status of electric grippers, 0: the electric gripper is moving; 1: the
electric gripper arrives at the target position; 2: the electric gripper grasps the object; 3: the object falls; 4.
the current ID is not initialized successfully.

Example

0 15RL Commands

338 xCoreControl System User Manual

15.4.19.22DhGripMove
Explanation It is the command to move DH PGI-140-80 series electric grippers.

Definition

DhGripMove(ID，Pos，Vel，Trq);
ID, data type: Int variable, the gripper ID that controls the movement of the gripper.
Pos, data type: Int variable, position of electric grippers, range: 0−1000.
Vel, data type: Int variable, velocity of electric grippers, range: 1−100.
Trq, data type: Int variable, output torque of electric grippers, range: 20−100.

Example

15.4.20Interrupt commands
15.4.20.1IRegister

Explanation
Register an interrupt, determining whether it can be triggered once, whether it can be debugged (triggered
during single-step or single-step pause), as well as the interrupt number, trigger signal, and trigger type. .
One trigger source can only be bound to one interrupt function.

Definition

IRegister([\SINGLE,][\DEBUG,]int_num, signal, trigger_type, trap_function);
[] indicates optional parameters
int_num, data type: interrupt number variable, used as an interrupt identifier
signal, register signal/DI signal
trigger_type, trigger method

DI signal trigger methods:
⚫ \Posflank: posedge triggering
⚫ \Negflank: negedge triggering
⚫ \Highlevel: high-level triggering
⚫ \Lowlevel: low-level triggering
Note: High/low level triggering will continuously trigger interrupts
Register (int\bool\bit\byte) trigger methods: 0 represents low level, non-0 represents high level

trap_function: interrupt function name
\SINGLE, single trigger (optional)
\DEBUG, debuggable (optional), adding this parameter allows interrupts to be triggered during
single-step or single-step pause states

Example

IRegister \SINGLE,\DEBUG,intnum0,DI1_0,\Posflank,"trapfun1"
Register an interrupt where when DI signal DI1_0 has a posedge change, execute trapfun1 function and
stop responding to this interrupt after one trigger; this interrupt can be triggered during single-step and
single-step pause states; intnum0 serves as an identifier for this interrupt, used for IEnable, IDisable, and
GetTrapData commands

15.4.20.2IEnable
Explanation Activate an interrupt disabled by IDisable, lookahead triggered (activated by default after IRegister)

Definition IEnable (int_num);
int_num, data type: interrupt number variable, used as an interrupt identifier

Example IEnable(intnum0);
Activate interrupt corresponding to intnum0, can be triggered by bound signal source after activation

15.4.20.3IDisable

Explanation
Disable an interrupt, lookahead triggered. Note that, for an interrupt configured with single-trigger mode,
if it receives an interrupt signal after being disabled by IDisable, it will still be treated as completion of the
single trigger

Definition IDisable(int_num);
int_num, data type: interrupt number variable, used as an interrupt identifier

Example
IDisable(intnum0);
Disable the interrupt corresponding to intnum0; after being disabled, it cannot be triggered by the bound
signal source

15.4.20.4GetTrapData
Explanation Get information about an interrupt, lookahead triggered.

Definition
GetTrapData (int_num,str);
int_num, data type: interrupt number variable, used as an interrupt identifier
Str, data type: string receiving interrupt information

Example GetTrapData (intnum0,string0);
Get interrupt information corresponding to intnum0, store information in string0

0 15RL Commands

xCoreControl System User Manual 339

0 16Appendix

340 xCoreControl System User Manual

16Appendix
16.1Details of user permission
Category Function Operator Teacher Programmer Admin System

Project related
and program

editing

Project configuration
(create, import, export, load, restore, save

as, set default project)
N N Y Y Y

View project
(including program and object data such as
IO, variables, and predefined parameters)

Y Y Y Y Y

Edit project
(including object settings such as program

editing and tools)
N N Y Y Y

Teach point positions
(including RL editor interface, variable list

point type, point list)
N Y Y Y Y

Robot motion
and program
running

Switch between automatic/manual mode Y Y Y Y Y
Power on/off Y Y Y Y Y

Start/Stop program Y Y Y Y Y
Switch program loop mode Y Y Y Y Y

Adjust program running speed N Y Y Y Y
Single-step program debugging N Y Y Y Y

Jog/Drag the robot N Y Y Y Y

Status
monitoring

View runtime data Y Y Y Y Y
Set IO Signal N Y Y Y Y

Set register value N Y Y Y Y
Variable monitoring N Y Y Y Y

Setting

Controller settings - basic settings N N Y Y Y
Controller settings - advanced settings N N Y Y Y

Controller settings - authorization settings N N N Y Y
HMI settings - basic settings N N N Y Y

HMI settings - Teach Pendant mode N N Y Y Y
User group Y Y Y Y Y

Zero calibration N N Y Y Y
Calibration of the base frame N N Y Y Y

Dynamic settings N N Y Y Y
Body parameters N N Y Y Y
Motion parameters N N Y Y Y

Force control parameters N N Y Y Y
Quick adjustment N Y Y Y Y

Electronic nameplate N N Y Y Y
Error code alarm filtering N N Y Y Y

Custom buttons N N Y Y Y

Communication

System IO N N Y Y Y
External communication N N Y Y Y

IO device N N Y Y Y
Bus devices N N Y Y Y
Register N N Y Y Y

End-effector N N Y Y Y
RCI settings N N Y Y Y

xPanel configuration N N Y Y Y
Electric gripper and suction cup N N Y Y Y

Serial port settings N N Y Y Y
Encoder N N Y Y Y
OPC-UA N N Y Y Y

Safety

Soft limit N N Y Y Y
Virtual wall N N Y Y Y

Collision detection N N Y Y Y
Safe region N Y Y Y Y

Safety monitor N N Y Y Y
Collaboration mode N N Y Y Y
Safety position N Y Y Y Y

Process Conveyor belt N N Y Y Y

0 16Appendix

xCoreControl System User Manual 341

Package Track N N Y Y Y

Log Log query Y Y Y Y Y
Diagnostic setting N N N N Y

Options

Connect/About/Demo Y Y Y Y Y
Software upgrade - controller upgrade/other

settings N N N Y Y

Software upgrade - HMI upgrade/controller
backup Y Y Y Y Y

Export Y Y Y Y Y
Import N N N Y Y

File manager N N N Y Y

16.2Introduction of collaborative robot's end-effector handle
16.2.1ER series

The xMate ER series robot end-effector integrates a Pilot handle with an intelligent interactive panel.
In Drag Mode, the buttons on the Pilot handle can be used for quick point position teaching and
continuous trajectory teaching, providing better human-machine interaction.
Definition of buttons on end-effector Pilot handle:

6

1

45

6

2 3

S/N Definition
① It is used to update the teaching point with the current pose, start/stop trajectory recording
② Next
③ Add the midpoint/track to the list and confirm/cancel the pop-up prompt.
④ Previous
⑤ Delete the point position/trajectory in the list, cancel pop-up window prompts
⑥ In Drag Mode, press the two enabling buttons at the same time to activate the drag function

16.2.2CR series
The xMate CR series robot end-effector integrates an xPanel handle with an intelligent interactive
panel. In Drag Mode, the buttons on the Pilot handle can be used for quick point position teaching
and continuous trajectory teaching, providing better human-machine interaction.
Definition of buttons on end-effector xPanel handle:

S/N Definition
① Add the midpoint/track to the list and confirm the pop-up prompt
② Move forward
③ Delete the point/track in the list and cancel the pop-up prompt
④

In Drag Mode, press the two enabling buttons at the same time to activate the drag function
⑤

0 16Appendix

342 xCoreControl System User Manual

⑥ Move backward

⑦
Update the teach point with the current pose, confirm the pop-up prompt, and start/stop
trajectory recording.

16.3Point position and path teaching (based on the collaborative robot's end-effector handle)
16.3.1Point position teaching

Turn on the drag enabling switch on the operation panel, and the robot is powered on automatically
and enables Drag Mode. The following operations can be performed through Robot Assist and the
robot end-effector drag handle:
Step Explanation

1. Create/load a project and enter the Point List interface; The end-effector buttons only respond when the current page of
Robot Assist is Point List or Path List.

2. Press the two enabling buttons on the end-effector handle at
the same time, drag the robot to any position, and release the
drag enabling button. Press the Add Point button on the
end-effector handle.

A new teaching point of the current pose is added to the end of
the Point List, and the cursor is now at the new teaching point;

3. Press the Previous/Next button on the end-effector handle Move the cursor to the previous/next point in the Point List and
select the point;

4. Select a point to update in the Point List, drag the robot to
another position, and release the drag enabling button. Press the
Update Point button on the end-effector handle;

A pop-up window prompt will appear when you try to update a
point position. If you press the OK button on the end-effector
handle, the selected point position will be updated from the
current pose. If you press the Cancel button on the end-effector
handle, the pop-up window will be closed, and the selected
point position will remain unchanged;

5. Select a point to delete in the Point List. Press the Delete
Point button on the end-effector handle and confirm.

A pop-up window prompt will appear when you try to delete a
path. If you press the OK button on the end-effector handle, the
selected path will be deleted from the Path List. If you press the
Cancel button on the end-effector handle, the pop-up window
will be closed, and the selected path will remain on the Path
List;

16.3.2Path teaching
Turn on the drag enabling switch on the operation panel, and the robot will be powered on
automatically and enable the drag mode. Then, perform the following operations through Robot
Assist and the end-effect drag handle:
Step Explanation

1. Create/Load a project, move the robot to any start position,
and enter the Path List interface.

The end-effector buttons only respond when the current page of
Robot Assist is Path List or Path List.

2. Press the Add Path button on the end-effector handle; A new path is added to the end of the Path List, and the cursor
is now at the new path;

3. Press the Previous/Next button on the end-effector handle; Move the cursor to the previous/next path in the Path List and
select the path;

4. Select a path in the Path List to start recording. Press the
Start Trajectory Recording button on the end-effector handle
and press the two enabling buttons on the end-effector handle
at the same time to drag the robot for trajectory recording.

The trajectory recording starts after the Start Trajectory
Recording button is pressed. Press the Stop Trajectory
Recording button to stop recording, and the trajectory is saved
automatically.

5. Select a path to delete in the Path List. Press the Delete Path
button on the end-effector handle and confirm.

A prompt window will pop up when you try to delete a path. If
you press the OK button on the end-effector handle, the
selected path will be deleted from the Path List. If you press the
Cancel button on the end-effector handle, the prompt window
will be closed, and the selected path will remain on the Path
List.

16.4OPC-UARobotics model
The OPC-UA server of the xCore controller system defaults to supporting all mandatory options
specified in the standard of OPC 40010-1 OPC-UA for Robotics, Part 1: Vertical Integration. The
top-level directory is as follows:

0 16Appendix

xCoreControl System User Manual 343

Type Browse Name Description

MotionDeviceSystem RokaeRobot
Each server has an instance of
MotionDeviceSystem type, named "RokaeRobot",
placed under the Objects node;

The child nodes of MotionDeviceSystem are as follows:

Type Browse Name Description

MotionDevices MotionDevices A container that can accommodate
MotionDeviceType instances

Controllers Controllers A container that can accommodate
MotionDeviceType instances

SafetyStates SafetyStates A container that can accommodate ControllerType
instances

CustomVariables CustomVariables

A container that accommodates custom variables.
This node is an extension of the Robotics standard
model, and all user-defined variables can be
found under this node

16.4.1MotionDevices model

The
child
nodes

of MotionDevice are as follows:

Type Browse Name Description

MotionDeviceCategory MotionDeviceCategory
The type of motion equipment specified in ISO
8373, which is set to ARTICULATED_ROBOT,
that is, joint robot

Manufacturer Manufacturer Manufacturer
Model Model Robot model

ProductCode ProductCode Product number, currently not supported
SerialNumber SerialNumber Serial number, currently not supported
ParameterSet ParameterSet/SpeedOverride Program speed, RL program speed: 1−100%

16.4.1.1Axes child nodes

Type Browse Name Description

MotionDevice Robot The instance of MotionDeviceType, named "Robot"

0 16Appendix

344 xCoreControl System User Manual

Type Browse Name Description

Axis Axis%1
1. Each instance corresponds to an axis, and a 6-axis robot
corresponds to 6 instances
2. Name according to axis number, such as Axis1, Axis2

The Axes child nodes are as follows:

Type Browse Name Description

MotionProfile MotionProfile Axis type, generally: 1 (ROTARY)
ParameterSet ParameterSet/ActualPosition Current axis position, in degrees

ParameterSet/ActualSpeed Current axis speed, in degrees/s

16.4.1.2PowerTrains child nodes

Type Browse Name Description

PowerTrain Motor%1

1. Each instance corresponds to an axis power unit, and a
6-axis robot corresponds to 6 instances, including 6
MotorType instances
2. Name according to axis number, such as Motor1, Motor2

Motor child nodes are as follows:

Type Browse Name Description

Manufacturer Manufacturer Manufacturer, currently not supported
Model Model Robot model, currently not supported

ProductCode ProductCode Product number, currently not supported
SerialNumber SerialNumber Serial number, currently not supported

ParameterSet ParameterSet/MotorTemperatur Motor temperature, currently not
supported

16.4.2Controllers model

0 16Appendix

xCoreControl System User Manual 345

ContorllerType child nodes are as follows:

Type Browse Name Description

Manufacturer Manufacturer Manufacturer
Model Model Robot model

ProductCode ProductCode Product number, currently not supported
SerialNumber SerialNumber Serial number, currently not supported
CurrentUser CurrentUser Currently not supported
Software Software A container containing SoftwareType instances

TaskControls TaskControls A container containing TaskControlType instances

16.4.2.1Software child nodes

Type Browse Name Description

Software xCore xCore control system

ContorllerType child nodes are as follows:

Type Browse Name Description

Manufacturer Manufacturer Manufacturer
Model Model Robot model

SoftwareRevision SoftwareRevision Software version number, such as 2.1.2

16.4.2.2TaskControls child nodes

Type Browse Name Description

ContorllerType xCore 1. Each robot contains an instance of ContorllerType, named
xCore

0 16Appendix

346 xCoreControl System User Manual

Type Browse Name Description

TaskControl RobotProgram TaskControlType instance named RobotProgram

ContorllerType child nodes are as follows:

Type Browse Name Description

ComponentName ComponentName Null

ParameterSet ParameterSet/TaskProgramName Display the current RL project
name

ParameterSet/TaskProgramLoaded
If the project has been loaded,
display true, and if there is no
project, display false

16.4.3SafetyStates

Type Browse Name Description

SafetyState SafetyState SafetyStateType instance named SafetyState

SafetyState child nodes:

Type Browse Name Description

ParameterSet ParameterSet/EmergencyStop Null

ParameterSet/OperationalMode

Operation mode, enumeration values: 0-Other,
1-Manual Reduced Speed, 2-Manual High Speed,
3-Automatic, 4-Automatic External
At present, themanual and automatic modes
in the control system correspond to 1 and 3 in
the above enumeration values respectively

ParameterSet/ProtectiveStop Internal safety gate stop and protection stop
status of the controller

16.4.4CustomVariables

The custom variables configured in section 11.13 can be found under this node, and clients can
interact with controller data by reading and writing variables under this node.

0 17Troubleshooting

xCoreControl System User Manual 347

17Troubleshooting
17.1Control System Error Codes
17.1.11XXXX
Code Description Possible Reasons Solution

10000 Error in parsing HMI request

packet

Incorrect protocol of HMI request

packet

Please check if the HMI and the

control system version matches

10001 JOG startup failed 1. Not in the Manual mode; 2. Robot

not powered on; 3. Robot in motion; 4.

Not in the Position mode

Please make sure that the robot is in

the Manual mode and powered on

10002 Quick adjustment startup

failed

1. Not in the Manual mode; 2. Robot

not powered on; 3. Robot in motion; 4.

Not in the Position mode

Please make sure that the robot is in

the Manual mode and powered on

10003 Mechanical zero calibration

failed

1. Not in the Manual mode; 2. Robot

in motion; 3. Not in the Position mode

Please make sure that the robot is in

the Manual mode and not in motion

10004 Mechanical zero calibration

succeeded

None None

10005 Sensor zero calibration failed 1. Not in the Manual mode; 2. Robot

in motion; 3. The robot is not around

the mechanical zero; 4. Not in the

Position mode

Jog the robot to the mechanical zero

and make sure that the robot is in

the Manual mode and not in motion

10006 Sensor zero calibration

succeeded

None None

10007 Failed to reboot the controller Please stop the robot motion and the

RL program

10008 Failed to clear encoder alarm Servo encoder fault Restart robot. If it's still present,

contact ROKAE Technical Support

10009 Encoder alarm cleared

successfully

None None

10010 Failed to switch to the Manual

mode

Mode switching is not allowed when

the robot is in motion; or the robot is

already in the Manual mode

Stop the motion and try again

10011 Failed to switch to the

Automatic mode

Below are some possible causes: 1.

The robot is in motion; 2. The robot is

in emergency stop; 3. Drag is already

enabled; 4. Automatic mode is already

enabled

1. Not in motion; 2. Restore from

emergency stop; 3. Drag is disabled

10012 Power-On Condition Check

Failure

1. Not in correct operation mode; 2.

Robot in emergency stop state; 3.

Robot in torque control mode; 4.

Shutdown signal received; 5. Servo in

critical fault state; 6. Controller

initialization incomplete

1. Switch to correct operation mode;

2. Reset emergency stop state; 3.

Switch robot to position mode; 4.

Check servo faults; 5. Wait for

controller initialization to complete

10013 Power-off failed The robot is in motion or it is not in Stop the robot motion

0 17Troubleshooting

348 xCoreControl System User Manual

the Automatic mode

10014 Failed to enable drag! Drag cannot be enabled in the

following cases: 1. Automatic mode;

2. Powered on; 3. Not in the Position

mode; 4. In motion; 5. Not executing a

routine task; 6. Safety monitoring or

safety monitor triggered!

Switch to the Manual mode, keep

the power off, and switch to the

Position Mode, and then try again;

or try again after reboot.

10015 Drag enabled successfully None None

10016 Failed to disable drag! Wrong operating mode 1. If the drag is enabled through

RCI, it should be disabled through

RCI; 2. Restart the robot and try to

recover.

10017 Drag disabled successfully! None None

10018 Failed to update the virtual

wall

1.The set area is too small; 2.The

robot's current position is outside the

set area; 3. Drag mode is not enabled

1. Expand the virtual wall boundary;

2. Move the robot end-effector to

the set area; 3. Enable the Drag

mode

10019 Virtual wall updated

successfully

None None

10020 New teach pendant connection

rejected

Teach pendant connection exists Disconnect existing connection

10021 Socket-server connection

timeout

Connection timeout 1. Please check the device

connection; 2. Please check whether

the server is working properly

10022 Wrong format of data received

by the socketread instruction

Network error

10023 IP address and port number for

creating the socket are

occupied

RL program or external

communication socket has already

used the IP address and port number.

Two sockets may not use the same IP

address and port number

Set different IP address or port

numbers

10024 The created socket name is

duplicated

The created socket name is duplicated Change another socket name

10025 The socket fails to receive data 1. Network connection error; 2. Server

did not send data in time; 3. Wrong

terminator; 4. Wrong data type

1. Check the network connection; 2.

Check whether the server sends

data; 3. Check whether the

terminator matches; 4. Check the

type of data sent

10026 socket disconnected None None

10027 socket connected None None

10028 SocketRead data length does

not match the set length

The number of data received does not

match the set number

Send the correct number of data

10029 Failed to set input in the

simulation mode

0 17Troubleshooting

xCoreControl System User Manual 349

10030 Failed to input signal in the

simulation mode

1. Simulation mode is not activated; 2.

The signal does not exist

1. Activate the Simulation mode; 2.

Check input signal setting

10031 Simulation GI signal failed 1. Simulation mode is not activated; 2.

The signal does not exist

1. Turn on the simulation mode; 2.

Check GI signal setting

10032 Failed to set the output signal 1.The signal does not exist; 2.DO

signal has been set as system output

1.Check the output signal setting; 2.

Simulation is not bound as the

system output signal

10033 Failed to set GO signal 1. The signal does not exist; 2. The set

value is beyond the allowable range

Check the GO signal setting

10034 Error in parsing RCI packet Unable to parse for wrong message

length

Please check the RCI instruction

format

10035 RCI parameters saved

successfully

None None

10036 RCI opened successfully None None

10037 RCI closed successfully! None None

10038 Failed to open RCI 1. The IP address cannot be same as

the robot address (192.168.0.160) and

local host (127.0.0.1); 2. Wrong

format of IP address; 3. Port number

already occupied; 4. Robot in motion;

5. Not in the Position mode

1. Please set the allowed IP address

and port number; 2. Stop the robot

motion

10039 Failed to close RCI 1. Robot in motion; 2. Not in the

Position mode

Stop the robot motion and try to

close again

10040 Failed to drag There is a large deviation between the

feedback and the model torque, and

the drag can not be activated

1. Check whether the current Tool

setting is consistent with the actual

situation and whether the set tool

mass center is reasonable; 2. Check

the monitoring window to see

whether the robot coordinate system

and pose consistent with the actual

situation; 3. Confirm that the current

robot model and RD parameters are

consistent with the actual

parameters; 4. Try to return to the

mechanical zero and zero the

sensors before dragging; 5. For

more detail, refer to the Drag Fault

Troubleshooting Manual

10041 Connect the client to RCI None None

10042 Client disconnected from RCI Client disconnection detected Please check the client

10043 RCI is not responding. Please

check auto and power-on

status

10044 Body parameter identification None None

0 17Troubleshooting

350 xCoreControl System User Manual

completed. Please reboot the

robot

10045 Load parameters are identified

successfully

None None

10046 Failed to update collision

detection parameters

10047 Enable collision detection None None

10048 Disable collision detection None None

10049 Load identification failed. The

load exceeds Robot's rated

load

The load of installed tool or workpiece

exceeds the robot's rated load

Use a tool or workpiece within the

robot's rated load range

10050 Load identification failed.

Wrong load identification

result.

Exception in sensor torque feedback Check the sensor torque

10051 Failed to set joint position

limit

1. The set angle is beyond the robot’s

mechanical limit; 2. Not in the Manual

mode; 3. Robot in motion; 4. Not in

the Position mode

1. Switch to the Manual mode and

stop the robot motion; 2. Confirm

the robot's mechanical limit and set

the angle within the range

10052 Joint position limit set

successfully

None None

10053 Correction of robot hard limit None None

10054 Correction of joint position

limit

None None

10055 Failed to set servo filter

parameters

Failed to read servo filter data Restart the robot. If the issue

persists, please contact technical

support.

10059 This model of controller does

not support upgrading to

version 3.1 or higher!

The command filter for the

high-payload model has not been

enabled.

Keep the controller at the

pre-upgrade version. If there are any

issues, please contact technical

support.

10060 Setting of Maximum joint

velocity over the limit

1. The joint velocity range in the

Collaboration mode is 0-15 degrees/s;

2. The maximum axial velocity of

each axis cannot be exceeded in the

Non-Collaboration mode

Please check and set the value

within the range

10061 Setting of Maximum TCP

velocity over the limit

1. The TCP velocity range in the

Collaboration mode is 0-250; 2. The

maximum TCP velocity cannot be

exceeded in the Non-Collaboration

mode

Please check and set the value

within the range

10062 Setting of Joint torque over the

limit

The maximum joint torque of each

axis is 3 times of the rated torque

Please check and set the value

within the range

10063 Drag out of virtual

range,virtual wall failure

Dragging exerts excessive external

torque

1. Expand the virtual wall boundary;

2. Reduce the drag torque; 3.

0 17Troubleshooting

xCoreControl System User Manual 351

Increase virtual wall stiffness

10064 The virtual wall takes effect

again

After leaving the virtual wall then

enter the virtual wall again ,the virtual

wall takes effect again

no repair

10065 Sync NTP failed NTP service not installed; Failed to

sync time with server

Install NTP service; Make sure NTP

server is running

30060 Joint velocity over the limit

30061 TCP velocity over the limit

30062 Joint torque over the limit

30063 Momentum over the limit

30064 Total joint power over the

limit

Total joint power exceeds the value

set in the safety monitor

1. Slow down the motion speed; 2.

Reduce the load and inertia; 3. Turn

off the safety monitor

30065 Dual encoder position

deviation over the limit

30066 Dual channel data deviation of

the torque sensor exceeds the

limit

10067 Total power over the limit The maximum power of each axis is

the maximum joint torque (Nm) ×

maximum joint velocity (radians/sec),

where: 1. The maximum joint velocity

in the Collaboration mode is 15

degrees/s; 2. The maximum axial

velocity of each axis cannot be

exceeded in the Non-Collaboration

mode

Please check the parameters and

their unit

10068 Industrial robots do not

support pausing when collision

detected for the moment.

Please Switch to stopping

10070 Enter the safety zone and stop

the motion

None None

10071 Enter the safety zone and start

the Collaboration mode

None None

10072 Trigger the Reduced mode and

slow down the motion

None None

10073 Trigger the secondary

Collaboration mode and slow

down the motion

None None

10074 Exit the Reduced mode None None

10075 Trigger the Reduced mode None None

10078 Trigger limit during RCI

operation

1. Joint or Cartesian space position

over the limit; 2. Joint velocity over

Please check the torque instruction

and the initial status of the robot

0 17Troubleshooting

352 xCoreControl System User Manual

the limit; 3. Joint or motor torque over

the limit; 4. Large deviation between

torque instruction and actual torque; 5.

Robot in a singular position

10079 Force control module

protection triggered, force

control mode exited

See the "content" 1. Check if the robot status is

normal in force control mode; 2. Set

proper force control protection

parameters

10080 Failed to enable drag: joint

position over the limit

Current position of the robot over the

joint position limit

Jog the robot to a position within

the joint position limit

10081 socket failed to send data Network failure cause Check the network problem

10082 socket data reception timeout Network failure or code logic error 1. Check the code logic; 2. Check

whether data is properly received

and sent at the other end of the

network

10083 Connection failed with

external communication as a

client. Trying to reconnect

1. Wrong IP address and port number;

2. Server device not properly started;

3. Abnormal device connection

1. Check whether the set IP address

and port number are correct; 2.

Reopen the server

10084 Connection failed with

external communication as a

server

1. Wrong IP address and port number;

2. Server device not properly started;

3. Abnormal device connection

1. Set the IP address to blank or

0.0.0.0; 2. The port number cannot

be set to 0

10085 Socket creation failed. The

same name as the external

communication name

The socket in the RL program cannot

have the same as external

communication sockets

Use a name different from those of

external communication sockets

when creating a socket

10086 Socket creation failed. The

socket name exceeds 30 bytes

Socket name too long Shorten the socket name

10087 Failed to open the external

communication: $arg

$arg Process based on the cause prompt

10088 socket connected None None

10090 Safety zone set successfully None None

10091 Failed to set the safety zone 1. Not in the Manual mode; 2. Robot

in motion; 3. Safety Zone behavior is

set to "Trigger collaboration mode"

but the Collaboration mode is not

turned on

1. Switch to the Manual mode; 2.

Stop the robot motion; 3. To trigger

the Collaboration mode, please turn

it on first

10092 Collaboration mode set

successfully

None None

10093 Failed to set the Collaboration

mode

1. Not in the Manual mode; 2. Robot

already powered on; 3. Robot in

motion; 4. Parameters set over the

limit

1. Make sure that the robot is in the

Manual mode, stopped, and

powered off; 2. Check the parameter

setting of the Collaboration mode

10094 Safety monitor set successfully None None

10095 Failed to set the safety monitor 1. Not in the Manual mode; 2. Robot

already powered on; 3. Robot in

Make sure that the robot is in the

Manual mode, stopped, and

0 17Troubleshooting

xCoreControl System User Manual 353

motion powered off

10096 Failed to set the collision

detection trigger action

The trigger behavior is not supported Please modify the trigger behavior

10097 DH parameters are saved

successfully. Please restart the

robot for these parameters to

take effect.

None None

10098 In this version, only part of the

linkage parameters can be

modified

10099 Failed to save RD parameters.

RD parameter changes over

the limit

RD parameter changes over the limit The limit range of RD parameter

changes is +/- 50

10100 IP address and port number for

creating the socket are

occupied

RL program or external

communication socket has already

used the IP address and port number.

Two sockets may not use the same IP

address and port number

Please use different IP address or

port numbers

10101 socket ip:port error Duplicate or wrong IP address already

used by the RL program and external

communication sockets

Change the Socket to a free

IP:PORT of the host or check the

network settings

10102 Socket port error Wrong port number already used by

the RL program and external

communication sockets

Change the socket port to a free port

number from 0 to 65535

10103 SocketSendString failed Connection not established or network

error

Please check the network

connection or use a connected

socket

10104 SocketSendByte failed Connection not established or network

error

Please check the network

connection or use a connected

socket

10105 Failed to parse socket data Data sent against the rules Send data that conform to the rules

10106 Rapid motion failed. Not in

the Manual mode

Wrong robot status. Not in the Manual

mode

Switching to the Manual mode

10107 Rapid motion failed. Program

is running

Wrong robot status. Program is

running

Pause the program

10108 Rapid motion failed. Robot not

powered on

Wrong robot status. Robot not

powered on

Robot enables Power On

10109 Starting point not set. Error in

Home instruction

Starting point not set. Error in Home

instruction

Set the starting point through the

Setup > Basic Settings > Quick

Adjustment interface

10110 Calibration angle set

successfully

None None

10111 Failed to set the calibration

angle

Calibration angle over the limit Set the angle within the limit

0 17Troubleshooting

354 xCoreControl System User Manual

10112 End-effector quick adjustment

failed. Please select the

appropriate adjustment type

End adjustment is used for fine-tuning

the end-effector pose. Calculation may

fail for large-scale end-effector

adjustment

1. Check the robot’s current pose

and tool/work object parameters,

and select the appropriate type of

end-effector adjustment; 2. The

robot is already in the

corresponding pose; 3. The

specified pose is out of the range of

motion; 4. The specified pose may

move the robot to a singularity

10114 Duplicate serial port names.

Please enter again

When creating a new serial port or

modifying the name of a serial port,

the name should be different from the

system IO, the socket name or existing

serial port names

Check the system IO, socket name

and existing serial port names, and

re-enter the new serial port name

10115 Serial port created successfully None None

10116 Failed to create the serial port 1. Serial port hardware connection

disconnected; 2. The serial port socket

does not exist

1. Please check the serial port

hardware connection; 2. Delete the

serial port variable from the variable

list and recreate one

10117 Failed to close serial port 1. Serial port hardware connection

disconnected; 2. The serial port socket

does not exist

1. Please check the serial port

hardware connection; 2. Click

pptomain and run again

10118 Serial port closed successfully None None

10119 Serial port does not exist The serial port does not exist Please create a serial port in the

Communication - Serial Port Setting

interface

10121 Serial port failed to send string 1. Serial port hardware connection

disconnected; 2. The serial port socket

does not exist

1. Please check the serial port

hardware connection; 2. Delete the

serial port variable from the variable

list and recreate one, and ensure that

the serial port communication is

proper and available

10122 Serial port failed to read byte Data read cannot be converted to byte

type

Please check the content sent

10123 Serial port failed to send byte 1. Serial port hardware connection

disconnected; 2. The serial port socket

does not exist

1. Please check the serial port

hardware connection; 2. Delete the

serial port variable from the variable

list and recreate one, and ensure that

the serial port communication is

proper and available

10124 Serial port failed to clear

buffer

1. Serial port hardware connection

disconnected; 2. The serial port socket

does not exist

1. Please check the serial port

hardware connection; 2. Click

pptomain and run again

10125 Serial port failed to obtain the 1. Serial port hardware connection 1. Please check the serial port

0 17Troubleshooting

xCoreControl System User Manual 355

buffer length disconnected; 2. The serial port socket

does not exist

hardware connection; 2. Click

pptomain and run again

10126 serial data reception timeout Network failure or code logic error 1. Check the code logic; 2. Check

whether data is properly received

and sent at the other end of the

network

10127 serial failed to receive data 1. Abnormal serial port connection; 2.

Opposite end failed to send data in

time; 3. Mismatch of parameters

configured for both ends of the serial

port

1. Check the serial hardware

connection; 2. Check whether the

opposite end has sent data; 3. Check

the parameters configured for both

ends of the serial port

10128 xDiagnose version too old.

Unable to view the data

xDiagnose version too old Can use xDiagnose version 0.3.8 or

above

10129 The wait time of the conveyor

belt for the work object over

the limit

1. The conveyor belt stops but the

tracking is still on; 2. The

photoelectric switch functions

abnormally and it cannot capture the

work object trigger signal

1. Check whether the conveyor belt

is moving properly; 2. Check

whether the photoelectric switch

captures the trigger signal properly

10130 Work object beyond the

startup window

10131 Work object beyond the

working area

Work object beyond the working area.

Unable to keep tracking

Please adjust the work object

position

10132 Conveyor belt speed below the

threshold

The conveyor belt stops moving or the

encoder is disconnected

Please check whether the conveyor

belt stops moving or the encoder is

disconnected

10133 Failed to switch to the

hot-swapping mode

Hot-swapping is not supported by the

model, control cabinet or safety board

firmware

1. Check whether the current robot

model is an industrial model with

the XBC5 control cabinet or a

collaborative CR model; 2. Check

whether the robot safety board is a

mini board and the firmware is

upgraded to 2.0; 3. Check whether

the ENI file is correctly configured

10134 Failed to switch to the

hot-swapping mode

1. Safety board failed to switch the

status correctly; 2. Communication

error

Please contact the supplier for

support

10135 Switched to hot-swapping

mode successfully

None None

10136 Rapid motion failed. Angle

over the mechanical limit

Joint angle over the mechanical limit Modify the angle value and make

sure it is within the mechanical limit

10137 Work object on the conveyor

belt have been associated

twice

Execute WaitWobj again when

DropWObj is not executed

Please check the instruction. The

same work object should be

associated only once

10138 Failed to execute Waitwobj Caused by continuous execution in the Single-step execution in the Manual

0 17Troubleshooting

356 xCoreControl System User Manual

instruction Manual mode mode or continuous execution in the

Automatic mode

10139 There are no associated work

objects

1. There is no work object being

tracked; 2. There is no conveyor belt

with the specified name

Please place the work object on the

conveyor belt and trigger the

photoelectric switch. The status

monitoring shows whether the work

object is in the correct position

10140 Abnormal friction force

identification result. Use

nominal friction coefficient

Contact the Control Team

10141 The mass input is out of range The mass input should be between 0

and the maximum load

10142 Load-free identification not

performed. Loaded

identification stops

Please perform load-free

identification first and then loaded

identification

10143 Failed to set speed before

moving to a point position or

force control identification

10144 This model only modifies the

friction force after kinetic

identification. It is

recommended to perform

friction force identification

directly.

10145 PCB 3/4 axis robots do not

support the Reduced mode for

the moment. There is no

trigger action

PCB 3/4 axis robots do not support the

Reduced mode for the moment

10146 The Robot does not support

dynamic identification

The Robot does not support dynamic

identification

1.Please click the friction

identification button

10147 Function authorization failure See the content Please contact the administrator of

licensing

10148 The axis max speed exceeds

the limit, data won't be saved

See the content Please edit the axis max speed

setting on HMI

10149 Socket disconnected, pause

program according to the

socket setting

Socket disconnected Check socket connection status

10150 Socket disconnected, pause

program and power down

motors according to the socket

setting

Socket disconnected Check socket connection status

10151 Failed to move to point Invalid to set "handheld" or "external"

for both the tool and the wobj

Select the correct tool and wobj

10152 Failed to save DH parameters. DH parameter changes over the limit The limit range of DH parameter

0 17Troubleshooting

xCoreControl System User Manual 357

DH parameter changes over

the limit

changes is: length +/- 50mm , angle

+/- 10°

10153 Calibration failed. user frame

id error

Calibration failed. user frame id error Select the correct user frame system

and recalibrate.

10154 The robot is in a safe

retraction state and cannot

perform the current operation.

The robot is in a safe withdrawal state

and is not allowed to perform the

current operation.

After the jog robot has safely

retracted in manual mode, try again.

10200 Electronic nameplate does not

exist

1. The body has no electronic

nameplate; 2. Hardware damage of the

electronic nameplate; 3. The serial

port of electronic nameplate

configured incorrectly

1. Check the hardware connection

of the electronic nameplate serial

port; 2. Check the electronic

nameplate hardware; 3. Check the

serial port configuration of the

electronic nameplate

10201 Error in electronic nameplate

data reading

1. Wrong protocol address of the

electronic nameplate; 2. Hardware

damage of the electronic nameplate

1. Check whether the protocol

matches; 2. Check the electronic

nameplate hardware

10202 Error in electronic nameplate

data writing

1. Wrong protocol address of the

electronic nameplate; 2. Hardware

damage of the electronic nameplate

1. Check whether the protocol

matches; 2. Check the electronic

nameplate hardware

10203 Electronic nameplate data

mismatch

1. The robot body has been changed;

2. The control cabinet has been

changed

Data overwrite after confirmation

10204 Encoder battery voltage too

low

1. Running for too long; 2. Encoder

battery is damaged

Replace the encoder battery

10205 The duration of the robot

motion exceeded the warranty

period

Not maintained in time Regular maintenance

10206 Data overwritten successfully None None

10207 Electronic nameplate data

overwrite not allowed

1. Electronic nameplate does not exist;

2. Model, ID or hardware version do

not match

Please check the electronic

nameplate according to the log

10208 RC data overwrite not allowed 1. The controller model does not

match with the body; 2. Data has not

been burnt to the electronic nameplate

or wrong data is burnt

1. Select the correct model and

restart the controller; 2. Burn the

correct data to the electronic

nameplate

10209 Socket communication failed 1.IP and port are already used by

external communication 2.The socket

name has the same name as the

external communication, the default

SYS_SOCKET name is already used

by the external communication.

1.Change the port or IP of the

socket 2.Change the name of the

socket

10210 Switching precision

compensation state not

allowed

Zero point data error Check zero point data

0 17Troubleshooting

358 xCoreControl System User Manual

13013 Emergency stop triggered None Manually resume emergency stop

13014 Safety gate opened None Manually close the safety gate

13015 Start to calculate body

parameter identification

None None

13016 Error in program lexical or

grammar check

Grammatical error in RL program Please check the RL program

13017 Program PP_to_main failed 1. Task destroyed; 2. Project file not

loaded; 3. main function missing

1. Reinitialize the task; 2. Reload

the project; 3. Check if there is a

main function in the file

13018 Program PP_to_func failed 1. Task destroyed; 2. Symbol table not

yet established for the task; 3. The

function to be jumped to does not exist

1. Reinitialize the task; 2. Check if

there is a grammatical error in the

function and recreate the symbol

table; 3. Check if the function exists

13019 Program PP_to_line failed 1. Task destroyed; 2. Symbol table not

yet established for the task; 3.The

program PP_to_line jump is only

allowed inside the same PROC/FUNC

1. Reinitialize the task; 2. Check if

there is a grammatical error in the

function and recreate the symbol

table; 3.Please check if the jump is

inside the same PROC/FUNC

13020 All RL tasks have been

stopped. Please check the error

message or click PPToMain

1. The single loop mode task is

finished; 2. When an error occurs, the

task will stop

1. Check the program for logical

errors; 2.Click pptomain to run

again

13021 Wrong base coordinate

system. Failed to set

The controller can not parse the

instruction to set the base coordinate

system, possibly because the

controller version is not compatible

with the HMI

Please check whether the control

system version matches with HMI

13022 Next step select unloaded

Tasks.

Check the corresponding task in the

project's task list and execute

pptomain.

13030 RSC Detects that the Robot

Exceeds the Limit of Power

The robot power exceeds the limit, or

the power of configuration in RSC is

too low, or the RSC fails

Check whether the RSC robot

power limit range is reasonable, or

close the RSC robot power limit

13031 RSC Detects that the Robot

Exceeds the Limit of

Momentum

The robot momentum exceeds the

limit, or the momentum of

configuration in RSC is too low, or the

RSC fails

Check whether the RSC robot

momentum limit range is

reasonable, or close the RSC robot

momentum limit

13032 RSC Detects that the Robot

Exceeds the Limit of Elbow or

TCP Force

The robot Elbow or TCP force

exceeds the limit, or the Elbow or

TCP force of configuration in RSC is

too low, or the RSC fails

Check whether the RSC robot

Elbow or TCP force limit range is

reasonable, or close the RSC robot

Elbow or TCP force limit

13033 RSC Detects that the Robot

Exceeds the Limit of TCP

Velocity

The TCP velocity of robot exceeds the

limit, or the TCP velocity of

configuration in RSC is too low, or the

RSC fails

Check whether the RSC robot TCP

velocity limit range is reasonable, or

close the RSC robot TCP velocity

limit

0 17Troubleshooting

xCoreControl System User Manual 359

13034 RSC Detects that the Robot

Exceeds the Limit of Position

The position of robot exceeds the

limit, or the RSC fails

Check whether the RSC robot

position limit range is reasonable, or

close the RSC robot position limit

13035 RSC Detects that the Robot

Exceeds the Limit of Posture

The posture of robot exceeds the limit,

or the RSC fails

Check whether the RSC robot

posture limit range is reasonable, or

close the RSC robot posture limit

13036 RSC Detects that the Robot

Exceeds the Limit of Collision

Force

The collision force of robot exceeds

the limit, or the RSC fails

Check whether the RSC robot

collision force limit range is

reasonable, or close the RSC robot

collision force limit

13037 RSC Detects that the Robot

Exceeds the Limit of Joint

Power

The joint power of robot exceeds the

limit, or the RSC fails

Check whether the RSC robot joint

power limit range is reasonable, or

close the RSC robot joint power

limit

13038 RSC Detects that the Robot

Exceeds the Limit of Joint

Position

The joint position of robot exceeds the

limit, or the RSC fails

Check whether the RSC robot joint

position limit range is reasonable, or

close the RSC robot joint position

limit

13039 RSC Detects that the Robot

Exceeds the Limit of Joint

Velocity

The joint velocity of robot exceeds the

limit, or the RSC fails

Check whether the RSC robot joint

velocity limit range is reasonable, or

close the RSC robot joint velocity

limit

13040 RSC Detects that the Robot

Exceeds the Limit of Joint

Torque

The joint torque of robot exceeds the

limit, or the RSC fails

Check whether the RSC robot joint

torque limit range is reasonable, or

close the RSC robot joint torque

limit

13041 RSC Detects that the

Communication of joint is

Abnormal

The joint communication of robot is

abnormal, or the RSC fails

Try to reboot the robot, or contact

the manufacturer to check the

hardware failure

13042 RSC Detects that the

Operation of joint is Abnormal

The joint operation of robot is

abnormal, or the RSC fails

Try to reboot the robot, or contact

the manufacturer to check the

hardware failure

13043 The Communication between

RSC and Controller is error

The communication between RSC and

controller is error

Try to reboot the robot, or contact

the manufacturer to check the

hardware failure

13044 Failed to Synchronize Sdo

Data Between Controller and

RSC

Failed to synchronize sdo data

between controller and RSC

Try again, or contact the

manufacturer to check the hardware

failure

13045 Succeeded in Synchronize Sdo

Data Between Controller and

RSC

13046 The security limit of RSC is

exceeded when dragging

When dragged, TCP speed exceeds

250mm/s, triggering safe stop

13047 RSC Initialization Parameter The basic security parameters of RSC Hard restart the robot or control

0 17Troubleshooting

360 xCoreControl System User Manual

Checks are Inconsistent. are inconsistent with those of the

master controller

cabinet

13048 The communication between

the RSC and the master

controller enters a secure data

state (0x08)

The communication between the RSC

and the master controller enters a

secure data state (0x08)

13049 The parameter of joint position

limit for RSC is invalid

The set angle is beyond the robot’ s

mechanical limit

Confirm the robot's mechanical

limit and set the angle within the

range

13050 The parameter of safety home

position for RSC is invalid

The set angle is beyond the robot’ s

mechanical limit

Confirm the robot's mechanical

limit and set the angle within the

range

13051 Safety gate closed

13052 Safety gate is opened, and the

RL program cannot be

continued

Safety gate is opened Reset the safety gate, and try again

13053 RSC trigger Flying speed

protect

Robot experience flying speed

13057 RSC detected a short circuit

fault in channel

Please check if there is any wiring

error. After the fault is restored,

power off and restart

13058 RSC detects inconsistent

dual-channel signals of safety

DI signals

RSC safety DI signal dual channel

signal is inconsistent

Please check and repair the wiring

of the corresponding DI signal, then

reset it to 0, and then set it to 1 at

the same time to recover the fault

13059 RSC detected a dual machine

communication failure

If it persists, it is recommended to

replace the RSC

13060 RSC detected MCU address

fault

If it persists, it is recommended to

replace the RSC

13061 RSC detected inconsistent

output data fault

The data information output by the

host and slave computers is

inconsistent

If it persists, it is recommended to

replace the RSC

13062 RSC detected voltage

exceeding the limit

The voltage of the power supply is not

between 20~30V

Check RSC power supply voltage

13063 RSC detected algorithm

library malfunction

13064 RSC detected that Bamboo is

not running properly

Power off and restart. If the issue

persists after restarting, it is

recommended to replace the RSC

13065 RSC detects FSOE internal

communication failure

Re power on for testing. If the issue

persists, it is recommended to

replace the RSC

13066 RSC detected communication

failure in FSOE department

Re power on for testing. If the issue

persists, it is recommended to

0 17Troubleshooting

xCoreControl System User Manual 361

replace the RSC

13067 RSC detected abnormal

communication from station

13068 RSC detected that the slave

station is not in the FSOE data

state

14001 Network disconnected None None

14002 Network connection closed None None

14003 Network connection

established

None None

14004 Network connection

monitoring enabled

None None

14005 Reconnecting network None None

14006 Reconnecting network None None

14010 Write is not allowed for bound

registers

The register is bound to the system

functional register. Write operation in

RL program is not allowed

Please use another register or

unbind this register

14011 Failed to open fieldbus device.

Corresponding Ethercat slave

not found

No Ethercat slave is configured or

there is an exception in the device

linking

Import and configure Ethercat slave

14012 The register is readonly

register, Write operation is not

allowed

The register is readonly register, Write

operation is not allowed

Please use writeonly register ， or

modify the register attribute

14020 Fieldbus device opened

successfully

None None

14021 Failed to open fieldbus device See the "content" Please check the fieldbus device

configuration and make sure that the

corresponding device is correctly

connected

14022 Fieldbus device closed

successfully

None None

14023 The serial port is already

occupied by the fieldbus

device

The serial port is already used by

modbus RTU fieldbus device

Close the fieldbus device or use

another serial port

14030 Error in profinet fieldbus

model configuration

The data model selected for the slot

does not match the PLC

Reconfigure the data model of the

slot

14031 Error in holding register file Error in crc validation for holding

register files. Files are corrupted

Delete holding register file

14032 Failed to open fieldbus

device.SDO setup failed

SDO setup failed Check if SDO initialization settings

meet device requirements

14501 Unable to set system DO DO signal is a system IO signal and

cannot be set

Please use other output signals or

unbind this signal in the system IO

14502 Failed to set GO signal The value set is beyond the valid

range of the signal

Please check the value

0 17Troubleshooting

362 xCoreControl System User Manual

14503 Failed to set AO signal The value set is beyond the valid

range of the signal

Please check the value

14504 Failed to set PulseDO. Time

out of range

Wrong pulse time, [0.001, 2000] S

range

Re-enter the pulse time

14505 Failed to set PulseReg. Time

out of range

Wrong pulse time, [0.001, 10] S range Re-enter the pulse time

14510 Failed to load the output signal The mapped physical port is in

conflict with other signals or system

output signals

1. Check if the output port is

occupied; 2. Reconfigure the system

IO

14511 Failed to set the system input

signal. There is a conflict

Violation of system input

configuration rules. Possible causes: 1.

Duplicate system IO is configured; 2.

The corresponding IO is already

occupied by the RL project; 3. IO

signal does not exist

1. Configure independent system

IO; 2.Modify the system IO

occupied by the RL project; 3.Open

or create IO device

14512 Failed to set the system output

signal due to a conflict

Violation of system output signal

configuration rules. Possible causes: 1.

Duplicate system IO is configured; 2.

The corresponding IO is already

occupied by the RL project; 3. IO

signal does not exist

1. Configure independent system

IO; 2.Modify the system IO

occupied by the RL project; 3.Open

or create IO device

14521 Failed to initialize Ethercat IO

device. Corresponding

Ethercat slave not found

No Ethercat slave is configured or

there is an exception in the device

linking

Import and configure Ethercat slave

14530 The status of the safety panel

expansion IO device has

changed

Hardware damage or abnormal linking

for the expansion IO device

Please check the hardware status

and link status of the expansion IO

devices on the safety panel

14531 The status of the safety panel

expansion IO device has

changed

New expansion IO device connected None

14532 IO device status has changed IO device configuration connected None

14533 IO device status has changed IO device configuration connected None

14534 IO device status has changed IO device connection error None

14535 The imported register variable

uses a bus device that does not

exist on the current machine

The bus device is not configured on

the current machine

Manually edit the register variable

and change the device name to a bus

device that exists on the current

machine

14536 Empty signal name Used an empty signal Use the signal with the normal name

14537 Signal type invalid An invalid type of signal was used Use the correct signal type

14538 Signal mapping device not

existed

The signal is bound to a non-existent

device

Bind the signal to the correct device

14539 Signal mapping device is

disabled

The device for signal mapping is

disabled

1.Bind other normal devices

2.Re-enable disabled devices

14540 New group signal mapping The relationship between the starting The group signal end port number

0 17Troubleshooting

xCoreControl System User Manual 363

invalid, Port mapping error port and ending port of the group

signal is incorrect

should be greater than the start port

number; 2.The port number of the

signal should not exceed the device

port range

14541 New group signal mapping

invalid, Port number should

not be greater than 32

Too many signal ports in the group The number of signal ports in the

group should not exceed 32

14542 New signal mapping invalid,

Port mapping error

Signal port setting error 1.Change the starting and ending

ports of the signal to make them

consistent; 2.The port number of the

signal should not exceed the device

port range

14543 New signal mapping invalid,

Output physical port is already

used

The port used by the signal is

occupied

1. Configure independent system

IO; 2.Modify the system IO

occupied by the RL project; 3.Open

or create IO device

15000 Failed to execute drag path

playback

Execute drag path playback. No

available drag data in the buffer

Record the drag path again

15001 Failed to save the drag data No available drag data in the buffer Please record the drag path again

15002 Failed to execute drag path

playback

Drag path record deleted accidentally Record the drag path or import the

path again

15003 Failed to execute drag path

playback. Error in drag file

data

Playback path from another type of

robots

Import the correct drag playback

path or record the trajectory again

15004 Failed to save the drag data Failed to drag the replay serialized

data to the hard disk file

Please record the drag path again or

restart the robot

15005 Drag data saved successfully None None

15006 Execute drag path playback None None

15007 Start recording the drag

playback data

None None

15008 Stop recording the drag

playback data

None None

15009 Stop executing drag path

playback

None None

15010 Failed to record path data: too

few path waypoints

Too few drag path waypoints Please record the drag path again

15011 Failed to record path data:

joint angle over the limit

Joint in the drag path exceeds the joint

position limit

Please record the drag path again

15012 Failed to record path data:

joint velocity over the limit

Joint velocity in the drag path exceeds

the limit

Please record the drag path again

15013 Failed to record the path data:

the speed is not zero when

recording ends

The speed is not zero when path

recording ends

Click end recording after the robot

stops

15014 Failed to record path data: The The speed is not zero when recording Make sure the robot is stopped

0 17Troubleshooting

364 xCoreControl System User Manual

speed is not zero when

recording starts

starts before recording starts

15015 Failed to record the path data:

motor not powered on

Motor not powered on Robot Power-On

15016 Path data recorded

successfully

None None

15017 Execute drag path playback.

Failed to read path

Failed to parse the drag path data. The

path data may be tampered

Import the path or record the

trajectory again

15018 Path playback. The speed set

exceeds the limit

The playback speed set is too fast Decrease the path playback speed

15019 Waypoints in the path

playback exceed the joint

position limit

Playback path waypoint exceeds the

joint position limit

Adjust the current joint position

limit

15020 Path playback is not allowed

when the track is turned on.

Path playback is not allowed when the

track is turned on.

Path playback after closing the

tarck.

17001 Register failed to read data 1. The register does not exist; 2. The

register does not match the variable

type; 3. The array subscript is out of

range

Please check the register settings

17002 Register failed to write data 1. The register does not exist; 2. The

register does not match the variable

type; 3. The array subscript is out of

range

Please check the register settings

17003 modbus failed to read the input

register

17004 Failed to load register

configuration

Failed to parse register configuration

file (registers.json). See the "content"

for reasons

Please try to reconfigure the register

or erase the configuration

17005 modbus communication failed,

modbus link not established

17006 modbus configuration saved

successfully

None None

17007 External communication

configuration saved

successfully

None None

17008 Failed to parse modbus

configuration

Error in modbus register configuration Check the modbus register

configuration

17009 Failed to load the bus device

configuration file

Failed to parse the bus device

configuration file

(fieldbus_device.json). See the

"content" for reasons

Please try to reconfigure the bus

device or erase the configuration

17100 Failed to turn on cclink. cclink

gateway module not retrieved

cclink gateway module not configured

or an exception in the device linking

Import and configure cclink

gateway module

17101 cclink already turned on None None

0 17Troubleshooting

xCoreControl System User Manual 365

17102 Failed to turn on cclink

17103 cclink already turned off None None

17104 Successful communication

with CC-LINK IEF Basic

master

None None

17105 Communication with

CC-LINK IEF Basic master

disconnected

None None

17200 There is no any set of servo

params files that meet the rules

in the controller

Each function of servo parameter

switching can only be used if there is

at least one set of servo params in the

controller

None

17201 Power on failure, power on is

prohibited during servo

parameter switching

Power on failure, power on is

prohibited during servo parameter

switching

None

17202 It is prohibited to switch servo

parameters while robot is

power on

It is prohibited to switch servo

parameters while robot is power on

None

17203 Successfully switched servo

parameters

None None

17204 Servo parameter switching

mismatch

None None

17205 Electroplating line visual

socket, IP cannot be empty or

'0.0.0.0', port cannot be empty

None None

17206 Quick adjustment of custom

pose beyond limit.

None None

17207 There is an external input that

is rejected.

None None

17300 RL program customization

stopped and cannot continue

running

After pptomain 、 pptoline or

pptofunc,start run program

None

17301 xService's connection

disconnected

1.Connection between HMI and xCore

disconnected unexpectedly; 2.SDK as

client disconnect this connection

1.On HMI disconnect with xcore

and reconnect it.

17310 Servo parameter acquisition

failed

17311 Successfully obtained servo

parameters

17312 Servo parameter download

failed

17313 Successfully downloaded

servo parameters

17314 Some fields in cfg are missing Cfg file is incomplete please update the cfg file

0 17Troubleshooting

366 xCoreControl System User Manual

17315 Fail to change IP See content Enter the appropriate IP

17316 Rail zero calibration failed 1. Not in the Manual mode; 2. Robot

in motion; 3. Not in the Position mode

Please make sure that the robot is in

the Manual mode and not in motion

17317 Rail zero calibration

succeeded

None None

17318 Soft estop state does not allow

power on

There is currently a read-only register

bound to ctrl_soft_estop function code

and low level, no power on allowed

Reset the register bound with the

ctrl_soft_estop function code

17319 Soft emergency stop triggered none Resume soft emergency stop by

register

17320 Motion commands status is

inconsistent with the operation

See the content Do PPtoMain or reset cache

17500 The driver is in a critical error

state. It's not allowed to clear

alarm and power on.

The driver is in a critical error state,

hardware may in error state.

Try to power off and restart the

control system; Contact the

manufacturer's technical support.

17400 OpcUA Variable read failed 1.The variable is not existed; 2.The

variable type is different from the

parameter

Please check the RL command and

the OpcUA variable configuration

17401 OpcUA Variable write failed 1.The variable is not existed; 2.The

variable type is different from the

parameter

Please check the RL command and

the OpcUA variable configuration

17402 Soft calibration failed 1. Not in the Manual mode; 2. Robot

in motion; 3. Not in the Position mode

Please make sure that the robot is in

the Manual mode and not in motion

17403 Axis zero calibration

successfully

17404 Axis soft calibration

successfully

17405 Soft calibration successfully

17406 Axis Soft calibration failed 1. Not in the Manual mode; 2. Robot

in motion; 3. Not in the Position mode

Please make sure that the robot is in

the Manual mode and not in motion

17407 Opening rail failed, please

close the safety area first

17408 Safety area open failed When the rail is opened, the safety

area cannot be opened

17507 Conveyor start tracking failed.. None None

17508 Conveyor stop tracking failed.. None None

17509 Conveyor calibration failed,

the number of points in the X

direction is not 3.

Please check the calibration process None

17510 Conveyor calibration failed,

transmission ratio is 0.

1.The conveyor belt is not turned

on,2.Encoder value abnormality

None

17511 The safety stop parameters are

set incorrectly

The safety stop parameters may be set

to zero

Please set The safety stop

parameters to proper values

17512 During the tracking process of None None

0 17Troubleshooting

xCoreControl System User Manual 367

the conveyor belt, it is

prohibited to execute ordinary

motion commands

17513 The conveyor belt stopped

during tracking and cannot

continue running

None After pptomain, rerun the program

17520 OPC UA server start failed 1.Port is wrong or occupied; 2.Error

Configuration

1.Use the right port; 2.Change the

configuration

17521 HMI link None None

17522 HMI Motor None None

17523 HMI Motor None None

17524 PP_To_Main None None

17525 PP_To_Line None None

17526 PP_To_Func None None

17527 Reload Project None None

17528 Run Project None None

17529 Project Forward None None

17530 Project Back None None

17531 Manual mode switching

successfully

None None

17532 Automatic mode switching

successfully

None None

17600 Turn off maximum torque

monitoring

17700 None None

30067 joint power over the limit None None

30068 TCP angular speed over the

limit

None None

30069 elbow speed over the limit None None

30070 elbow angular speed over the

limit

None None

30071 moment over the limit None None

30072 tool attitude over the limit None None

18000 Robot exits the shared area,

freeing the shared area from

occupation

None None

18001 Robots enter the shared area,

and the shared area is occupied

None None

18002 The robot has entered the

occupied shared area and is

slowing down and stopping at

maximum capacity

None None

18003 The robot is about to enter the None None

0 17Troubleshooting

368 xCoreControl System User Manual

occupied shared area, slowing

down and pausing, waiting for

the shared area to be released

18004 The robot has entered the

prohibited zone and has

slowed down to a maximum

capacity to stop

None None

18005 Robots are about to enter the

prohibited zone, plan to stop

None None

18006 Shared area failure, robot

continues to operate

None None

18007 When switching the reduction

mode, the current joint axis

angle has exceeded the

reduced joint position

None Please reset the reasonable

reduction joint position

18008 Cannot change the dimension

of the array

None Do not modify array dimensions

18009 controller logs are

corrupted,using backup logs

may be caused by a power failure or

abnormal restart

no need to fix

17.1.23XXXX
Code Description Possible Reasons Solution

31001
Configuration Parameter Error of

EtherCAT Master

Mismatched EtherCAT configuration

files

Re-import the configuration files, and

restart the control system

31002

Failed to Read EtherCAT

Authorization Files

The authorization file does not exist

or the read and write permissions are

incorrect

Re-import the authorization file

31003

EtherCAT Authorization Failure EtherCAT not Authorized Please check the EtherCAT

authorization code and try to

reauthorize it on the EtherCAT

authorization interface. After the

authorization is successful, restart the

robot to take effect

31004

EtherCAT Master Configuration

Failure

The master configuration fails due to

mismatched EtherCAT configuration

files

Re-import the configuration files, and

restart the control system

31005

DC Configuration Failure The configuration fails due to

mismatched EtherCAT configuration

files

Re-import the configuration files, and

restart the control system

31006

DCM Configuration Failure The configuration fails due to

mismatched EtherCAT configuration

files

Re-import the configuration files, and

restart the control system

31007
Bus Scan Failure The configuration fails due to

mismatched EtherCAT configuration

Re-import the configuration files, and

restart the control system

0 17Troubleshooting

xCoreControl System User Manual 369

files

31008

The Number of Configured

Slaves Does not Match that of

Scanned Slaves

1. The configuration fails due to

inconsistency between the EtherCAT

configuration and the actual network

topology; 2. Hardware failure in the

EtherCAT network from the slave

equipment

1. Re-import the configuration files,

and restart the control system; 2.

Contact the manufacturer's technical

support

31009

Failed to Enable the EtherCAT

Bus

Due to errors in EtherCAT bus

startup process, some slaves cannot

switch to OP mode correctly,

resulting in bus failure

Try to restart the control system;

contact the manufacturer's technical

support

31010
Internal Axis Servo Initialization

Failure

The drive malfunctions internally Check whether the servo drives are

disconnected from each other

31011

IO Slave Initialization Failure 1. The IPC and general IO modules

are disconnected from each other; 2.

General IO modules and safety IO

modules are disconnected from each

other

Restart the control system after

reconfiguring the IO signal according

to the failure reason

31012

Tailboard Slave Initialization

Failure

The IPC and the general tailboard

slave module is disconnected from

each other, or the tailboard slave

hardware fails

Check the hardware connection, or

replace the tailboard slave hardware

31013

Safety Board Slave Failure The IPC and the safety board slave

modules are disconnected from each

other

Check hardware connections

31014

Abnormal Communication with

Slave Devices

1. The communication between IPC

and slave module is interrupted; 2.

The slave device malfunctions

1. Confirm whether the EtherCAT

debug cable is unplugged from the

robot side; 2. Check the hardware

connections and restart the control

system; 3. Please contact the

technical support

31015

Servo Alarm The servo drive sends an alarm, and

the specific reason for the alarm

needs to find the corresponding drive

manual according to the error code

reported by the servo

1. Find the corresponding drive

manual according to the error code,

and handle it according to the manual

guidance; 2. Contact the technical

support

31016 Servo alarm cleared None None

31017

Ethercat is not Authorized, and

the Trial Period Ends

Ethercat is not authorized and can

only be used for one hour

Please contact the technical support

to ask for the Ethercat authorization

code and authorize on the EtherCAT

authorization interface. After the

authorization is successful, restart the

robot to take effect

31018 Abnormal Connection between 1. The cable between the slave 1. Please check whether the cables

0 17Troubleshooting

370 xCoreControl System User Manual

Slave Device and Controller device and the controller

malfunctions; 2. The slave

malfunctions

between the slave devices fail; 2.

Please contact the technical support

31019

Failed to Initialize the CClink

Gateway Slave

The hardware connection is

abnormal or the hardware

malfunctions

Check hardware connections

31020

Ethercat IO Slave Module not

Adapted

The Ethercat IO slave module that

has not been adapted is used,

therefore the controller has no

information about the current IO

slave. Users need to ensure that the

IO module is configured and used

correctly

Since the PDO setting of the IO

module that has not been adapted is

unknown, there is a certain risk in

direct use. Please use it with caution.

Generally, digital IO modules with

less than 64 channels can be used

directly; however, the analog IO

module is not recommended to be

used directly because the controller is

unknown to its analog quantity type,

range and accuracy parameters, and

the PDO settings of various

equipment manufacturers may also be

different. Please contact the technical

support for adaptation before using it

31021

Safety Board Slave Initialization

Failure

The safety board firmware version

configured by the eni file is

inconsistent with the actual firmware

version

Check whether the safety board

firmware version of the eni file is

consistent with the actual firmware

version

31022

Tailboard slave Input Current

Signal Overload

When the tailboard slave channel AI

is set to current mode, make sure that

the actual input is current and does

not exceed the limit parameter,

otherwise the hardware may be

damaged

Please disconnect the input signal of

the corresponding channel and enter

the xpanel configuration interface to

set as Voltage Mode

31023

Tailboard slave Input Current

Signal Overload

The xpanel setting has been

completed, and the overload is

recovered

To continue using the current mode,

ensure that the input current is not

overloaded

31024

xPanel terminal slave station

hardware test failed

xPanel terminal slave station

hardware test process is

incorrect,hardware connection is

incorrect or hardware is faulty

Please confirm the xPanel test

process is correct. If the fault

persists,contact R&D for

troubleshooting

31025

Safety Board Type Configuration

Error

The safety board type of the

configuration is inconsistent with the

actual safety board type

Check whether the safety board type

of the configuration is inconsistent

with the actual safety board type

31026

Initialization of internal axis

servo drive failed

The server drive version in the ENI

file of the master configuration is

inconsistent with the server drive

Replace the main site ENI file to

confirm that the correct ENI file is

used.

0 17Troubleshooting

xCoreControl System User Manual 371

configuration scanned

31027
Unable to read the primary ENI

file correctly

The master ENI file was not found in

the system

Re upgrade the ENI file

corresponding to the current model

31028

EtherCAT failed to scan the bus,

and the scan slave information

does not match the slave

information in the configuration

ENI file

The configuration of slave

information or topology in the ENI

file of the master station is

inconsistent with the scanned

EtherCAT slave station

Replace and upgrade the correct ENI

file

31029

EtherCAT scan bus failed with

cross wiring from the slave

station

EtherCAT slave station wiring error Please check whether the wiring of

EtherCAT slave station is correct

31030

External Axis Servo Initialization

Failure

1. An unconnected external axis,

such as a guide rail, was mistakenly

opened 2.The drive malfunctions

internally

According to the cause of the error,

close the external axis that was

opened incorrectly or check if the

connection with the external axis is

interrupted

31031

Initialization of external axis

servo drive failed

The server drive version in the ENI

file of the master configuration is

inconsistent with the server drive

configuration scanned

Replace the main site ENI file to

confirm that the correct ENI file is

used.

31032

The ESI file and controller

version of the safety board RSC

do not match

The controller version is 3.0, and the

ESI file of the safety board RSC does

not match the controller version.

Some of RSC's safety functions will

not function properly.

We need to upgrade the ESI file of

the RSC security board and the ENI

file of the main control

32001

Power-On Failure Servo faults, STO circuit open,

power-on aborted, etc.

1. Confirm operation procedure; 2.

Check servo status; 3. Clear servo

alarms before power-on retry

32002
Power-on Failed, STO not

Connected

None None

32003

Blocking of Communication

Thread between Controller

Master and Slave Device

The communication between the

controller and the slave device is

abnormal due to software reasons

1. Soft restart of controller; 2.

Contact the technical support

32004
EtherCAT Thread Blocked,

Scheduling Timeout

Internal system error Restart control system

32005

The EtherCAT Thread was

Blocked and Timed Out over

5000 Times in a Row

Internal system error Restart control system

32006

Position Command Rejected The position command to be sent to

the servo has a big jump, and the

generated speed exceeds the

maximum speed of the motor, which

may cause danger. To be safe,

perform the power-off operation

Re-power on to operate

0 17Troubleshooting

372 xCoreControl System User Manual

32007
Ethercat Thread Event Execution

Timeout

Internal alarm Internal state record, which can be

ignored

32008

Error while writing Servo Zero Only support CR joints, confirm

whether it is a CR robot and whether

the firmware is correct

None

32009 write servo zero successfully

32010
Encoder Battery Voltage Low

Warning

Encoder Battery Voltage Insufficient Please replace encoder battery in time

32011
Encoder Battery Voltage Low

Warning Cleanup

35001
Short Circuit of the Drive Output to output, output to ground,

internal PWM bridge error

Troubleshoot circuit problems and

eliminate short circuit

35002
Over-Temperature of Drive The internal temperature of the drive

reaches the set value

Reduce the drive temperature below

the set value

35003
Over-Voltage of Drive The bus voltage exceeds specified

voltage limit

The bus voltage is restored within the

specified voltage range

35004
Under-Voltage of Drive The bus voltage is below the

specified voltage

The bus voltage is restored within the

specified voltage range

35005
Over-Temperature of Encoder

Motor

The motor over-temperature switch

shows the over-temperature error

Restore the temperature switch to

normal state

35006

Encoder Feedback Error 1. 5V output inside the drive is

over-current; 2. The resolver or

analog encoder is not wired; 3. The

level exceeds the error range; 4. The

incremental encoder differential

signal is not wired

1. The encoder power supply is

restored to the specified voltage

range; 2. The feedback signal is

restored to the specified level range;

3. The differential signal is connected

well

35007

Drive Phase Error The phase angle based on the

encoder fails to match with the

switch state of the HALL. This error

occurs only when the brushless

motor is configured to be sinusoidal.

This error does not occur during the

resolver feedback or when the HALL

correction function is stopped.

The phase angle based on the encoder

is consistent with the switching state

of the HALL

35008

Drive Reached the Current Limit Motor overload or abnormal circuit 1. Check whether the motor is

overloaded; 2. Check the circuit; 3.

Contact the technical support

35009

Drive Reaching Voltage Limit 1. The set speed is too high; 2. The

motor is abnormal

1. Check whether the set speed is

abnormal; 2. Check whether the

motor is abnormal; 3. Contact the

technical support

35010
Power-on of Drive at Positive

Limit

The drive is over positive limit Restore the drive limit

35011 Power-on of Drive at Negative The drive is over negative limit Restore the drive limit

0 17Troubleshooting

xCoreControl System User Manual 373

Limit

35012
Drive Following Difference out

of Tolerance

Beyond the following error set by the

user

Check whether the upper instruction

fails and check the robot state

35013

Position Counter in Place Internal error of drive Try to restart. If the problem is not

solved, please contact the technical

support

35014

Suitable for Fault without Other

Emergencies

Internal error of drive Try to restart. If the problem is not

solved, please contact the technical

support

35015

Node Error Internal error of drive Try to restart. If the problem is not

solved, please contact the technical

support

35016

Command Error of Drive 1. This error is not accurate and can

be ignored; 2. There is no PWM or

other command signals

Recover to input signal

35100

Under-Voltage of the Drive DC

Bus

The servo detects that the bus

voltage is less than the set

under-voltage protection threshold in

real time possibly due to insufficient

bus supply voltage

1. Check whether the power supply

voltage of the robot is normal; 2.

Check whether the drive capacitance

is normal; 3. Replace the servo drive

35101

Over-Voltage of Drive DC Bus The servo detects that the bus

voltage is higher than the set

over-voltage protection threshold in

real time, possibly because: 1. The

bus power supply voltage is too high;

2. The robot decelerates too quickly;

3. The handling of base power

supply is abnormal

1. Check the power supply voltage of

the robot; 2. Check the deceleration

of the robot; 3. Check the robot

power management loop

35102

Over-Current of Drive Motor The amplitude of servo real-time

detection current vector is larger than

the set safety protection threshold,

possibly because the current is raised

up due to the sudden stop of the

motor during operation

1. Check whether the three-phase line

and 48V power line of the motor are

connected correctly; 2. Check

whether the motor deflection angle is

correct

35103

Over-Load of Drive Motor The joint motor continuously

exceeds the rated torque protection

threshold range, possibly because of

the servo closed-loop control. If the

actual position of the motor cannot

track the given position, the torque

current will be too large, and the

error will be reported when the

duration reaches a certain degree

1. Check whether the three-phase line

and band-type brake cable of the

motor are connected correctly; 2.

Check whether the motor deflection

angle is correct

35104 Drive Motor Magnetic over Limit Determine whether the excitation Update the servo drive to the latest

0 17Troubleshooting

374 xCoreControl System User Manual

current amplitude is less than the set

value, otherwise, an error will be

reported. For field weakening

control, it is necessary to change the

excitation current to reach a higher

speed. At present, the bus voltage of

the motor adapted by low-voltage

servo is enough, without requiring

field weakening, so this error report

has been blocked

firmware version and update the

servo drive to the latest parameter

version

35105

Stall Alarm of Drive If the joint speed tracking error is

greater than the set threshold and

lasts for more than 1s, an error will

be reported. Stall is reported in the

start-up stage, and the motor needs to

find the deflection angle again for

normal operation. When stall is

reported during motor operation, it is

necessary to check hardware

configuration, software version and

parameters

1. Check whether the three-phase line

and band-type brake cable of the

motor are connected correctly; 2.

Check whether the motor deflection

angle is correct; 3. Check the

hardware configuration; 4. Check the

servo software version

35106

Out of Tolerance of Drive

Position

The joint position tracking error

exceeds the set threshold, so it is

necessary to check whether the

hardware and software are

configured correctly with suitable

version

1. Check whether the wiring harness

is connected correctly; 2. Check

whether the joint encoder is normal;

3. Replace joint hardware, motor,

reducer and drive; 4. Confirm

whether the instructions issued by the

master station are reasonable

35107

Zero Current Alarm of the Drive The zero current value needs to

exceed the set threshold, and the

current is abnormal when it is not

enabled

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35108

Phase A Over-Current of the

Drive

1. The phase A current of the motor

exceeds the sampling range of the

drive current; 2. The locked rotor for

motor; 3. The load is too large or the

speed is too fast; 4. The resistance of

joint mechanism is large

1. First check whether the harness is

connected correctly; 2. Check

whether the motor deflection angle is

correct; 3. Check whether the

band-type brake is opened correctly

when enabling; 4. When the load is

too much, reduce the speed and check

whether the fault disappears; 5.

Observe whether the fault joint

during operation makes abnormal

noise due to excessive resistance

35109 Phase B Over-Current of the 1. The phase B current of the motor 1. First check whether the harness is

0 17Troubleshooting

xCoreControl System User Manual 375

Drive exceeds the sampling range of the

drive current; 2. The locked rotor for

motor; 3. The load is too much or the

speed is too fast; 4. The resistance of

joint mechanism is high

connected correctly; 2. Check

whether the motor deflection angle is

correct; 3. Check whether the

band-type brake is opened correctly

when enabling; 4. When the load is

too much, reduce the speed and check

whether the fault disappears; 5.

Observe whether the fault joint

during operation makes abnormal

noise due to excessive resistance

35110

Phase C Over-Current of the

Drive

1. The phase C current of the motor

exceeds the sampling range of the

drive current; 2. The locked rotor for

motor; 3. The load is too much or the

speed is too fast; 4. The resistance of

joint mechanism is high

1. First check whether the harness is

connected correctly; 2. Check

whether the motor deflection angle is

correct; 3. Check whether the

band-type brake is opened correctly

when enabling; 4. When the load is

too much, reduce the speed and check

whether the fault disappears; 5.

Observe whether the fault joint

during operation makes abnormal

noise due to excessive resistance

35111

IGBT Over-Current of the Drive 1. The motor current exceeds the set

threshold; 2. The locked rotor for

motor; 3. The load is too much or the

speed is too fast; 4. The resistance of

joint mechanism is high

1. First check whether the harness is

connected correctly; 2. Check

whether the motor deflection angle is

correct; 3. Check whether the

band-type brake is opened correctly

when enabling; 4. When the load is

too much, reduce the speed and check

whether the fault disappears; 5.

Observe whether the fault joint

during operation makes abnormal

noise due to excessive resistance

35112 Object Overflow of the Drive

35113 Image Overflow of the Drive

35114 Thread H Timeout of the Drive

35115

Thread M Timeout of the Drive The servo software scheduling is

abnormal, and the program has not

been completed within the specified

time, possibly because the firmware

version or parameter version is not

the latest one

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35116 Thread L Timeout of the Drive

35117 Thread C Timeout of the Drive

35118 Interrupt and Crash of the Drive The servo software scheduling is Update the servo drive to the latest

0 17Troubleshooting

376 xCoreControl System User Manual

abnormal, and the program has not

been completed within the specified

time, possibly because the firmware

version or parameter version is not

the latest one

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35119 Main Task Crash of the Drive

35120 Illegal Hardware of the Drive

35121
Timeout in Debug Version of the

Drive

35122 Object ID Timeout of the Drive

35123 Thread ID Error of the Drive

35124
PV Variable ID Error of the

Drive

35125
VV Variable ID Error of the

Drive

35126
VU Variable ID Error of the

Drive

35127 Data Type Error of the Drive

35128
Existence of Data Object of the

Drive

35129
Non Existence of Data Queue of

the Drive

35130 Full Data Queue of the Drive

35131 Empty Data Queue of the Drive

35132
Application Version Error of the

Drive

35133
Parameter Verification Error of

the Drive

35134
Parameter Number Error of the

Drive

35135
PN Parameter ID Error of the

Drive

35136
UN Parameter ID Error of the

Drive

35137
FN Parameter ID Error of the

Drive

35138

SPI Communication Error of the

Drive

The communication between DSP

and parameter memory is abnormal,

possibly due to the firmware version

or the parameter version is not the

latest one; or the servo drive

hardware is abnormal

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35139
E2P Overflow of the Drive Too many parameters are read by the

parameter memory, possibly due to

Update the servo drive to the latest

firmware version, update the servo

0 17Troubleshooting

xCoreControl System User Manual 377

the firmware version or the

parameter version is not the latest

one; or the servo drive hardware is

abnormal

drive to the latest parameter version

and replace the servo drive

35140

Empty Dynamic Memory of the

Drive

Logic error occurs in the servo

software operation, possibly due to

the firmware version or the

parameter version is not the latest

one

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35141

Instruction Code Error of the

Drive

Logic error occurs in the servo

software operation, possibly due to

the firmware version or the

parameter version is not the latest

one

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35142

Instruction Length Error of the

Drive

Logic error occurs in the servo

software operation, possibly due to

the firmware version or the

parameter version is not the latest

one

Update the servo drive to the latest

firmware version, update the servo

drive to the latest parameter version

and replace the servo drive

35143
Meter Channel Number Error Of

the Drive

35144
OSCI Channel Number Error Of

the Drive

35145

Static Mode Error of the Drive Error occurs in the servo operation

mode, possibly due to the servo

firmware and parameters are not the

latest version; or the servo

parameters are not successfully

written

Update the servo drive to the latest

firmware version and replace the

servo drive

35146

Dynamic Mode Error of the

Drive

Error occurs in the servo operation

mode, possibly due to the servo

firmware and parameters are not the

latest version; or the servo

parameters are not successfully

written

Update the servo drive to the latest

firmware version and replace the

servo drive

35147

Mode Change Error of the Drive Error occurs in the servo operation

mode, possibly due to the servo

firmware and parameters are not the

latest version; or the servo

parameters are not successfully

written

Update the servo drive to the latest

firmware version and replace the

servo drive

35148

IPM Alarm of the Drive It is possibly because the servo

firmware and parameters are not the

latest version

Update the servo drive to the latest

firmware version and replace the

servo drive

0 17Troubleshooting

378 xCoreControl System User Manual

35149

Module Overheating Alarm of

the Drive

The joint temperature exceeds the

temperature range for safe and

reliable operation

Carry out corresponding cooling

treatment

35150

Disconnection of the STO Switch

of the Drive

The servo has been detecting the

STO signal level, which is

inconsistent with the setting logic, so

an error is reported, possibly due to

the robot enabling handle is not

effective

1. Press the manual enabling handle;

2. Re-plug the STO cable; 3. Replace

the STO cable and the servo drive

35151

Encoder Error (0x7371) The QEP encoder reports an error

and the ABZ cable is disconnected,

possibly due to the servo has not

been upgraded to the latest firmware

and parameter version

Update the servo drive to the latest

firmware version and update the

servo drive to the latest parameter

version

35152 Encoder Error (0x7372)

35153 Encoder Error (0x7373)

35154 Encoder Error (0x7374)

35155 Encoder Error (0x7375)

35156 Encoder Error (0x7376)

35157 Encoder Error (0x7377)

35158

Encoder Error (0x7378) Encoder chip reports an error: Biss2

communication abnormal

1. Check the joint encoder cable; 2.

Replace the encoder; 3. Replace the

encoder cable; 4. Replace the servo

drive

35159

Encoder Error (0x7379) Encoder chip reports an error: Biss1

communication is abnormal, and the

encoder decoding chip cannot be

found

1. Check the encoder cable at the

joint motor side; 2. Replace the

encoder; 3. Replace the encoder

cable; 4. Replace the servo drive

35160

Encoder Error (0x737A) 1. CRC error of encoder

communication; 2. Encoder

communication is abnormal

1. Re-plug the encoder cable; 2.

Replace the encoder; 3. Replace the

encoder cable; 4. Replace the servo

drive

35161

Encoder Error (0x737B) The encoder communication is

abnormal: CRC verification of

encoder passed, but encoder chip

reported an error

1. Re-plug the encoder cable; 2.

Replace the encoder; 3. Replace the

encoder cable; 4. Replace the servo

drive

35162

Encoder Error (0x737C) 1. Single encoder hardware fault; 2.

The encoder battery is exhausted.

1. If a single encoder reports an error

and cannot be recovered after restart,

it is necessary to contact after-sale

maintenance. 2. All axes report errors

at the same time. Contact the

after-sale maintenance to replace the

encoder battery.

35163 TZ Trigger

0 17Troubleshooting

xCoreControl System User Manual 379

35164 Internal Error (0xFF91)

35165
Upper Enabling Current Loop is

Set as 0 (0xFFA2)

35166

Unable to Track the Master

Station Position Command

(0x8612)

35201

5v of Over-Current of Secondary

Encoder

CDHD can provide a maximum

current of 250 mA to the secondary

encoder. Check whether the encoder

is short-circuited, and whether the

encoder drawing exceeds the current

limit

35202

Over-Current 1. Drive or motor fault; 2. The robot

load exceeds the limit; 3. Send

collision, etc.

Check whether the motor connection

is short-circuited and whether there is

overshoot in the current circuit

35203

Foldback of the Motor 1. Drive or motor fault; 2. The robot

load exceeds the limit; 3. Send

collision, etc.

Check the specifications of the

drive-motor. This fault may occur if

the capacity (power) of the motor is

too small.

35204

Foldback of the Drive Check the specification of the

drive-motor. This alarm may occur if

the capacity (power) of the drive is

too small. Check whether the

commutation angle is correct (i.e.,

whether the rectification is balanced)

35205

Invalid Current Sensor

Compensation

The drive malfunctions Restart. If the fault still exists, the

driver may need to be repaired.

Please contact the technical support

35206 Disconnection of Motor Phase The drive malfunctions Check the wiring of the motor phase

35207

Output Over-Current Detection The drive malfunctions Verify the correct wiring of the

digital output and ensure that the

output circuit is not shorted.

35208
Over-Voltage Check whether regenerative

resistance is required

35209

Under-Voltage Fault Check whether the main AC voltage

power supply is connected to the

drive and turned on. The

under-voltage limit can be read by the

UVTHRESH command

35210 Regenerative Over-Current Increase the regenerative resistance

35211
STO Fault Check whether the STO connector

(P1) is correctly connected

35212
Vbus Measurement Circuit

Failure

Restart. If the fault still exists, the

driver may need to be repaired.

0 17Troubleshooting

380 xCoreControl System User Manual

Please contact the technical support

35213
Bus AC Power Off Please check the wiring or contact the

technical support

35214

Regenerative Resistance

Overload

Check whether regenerative

resistance characteristics are suitable

for this application

35215

Overheating of Integrated Power

Module

Check whether the ambient

temperature exceeds the drive

specification. Otherwise contact the

technical support.

35216

Control Panel Overheating Check whether the ambient

temperature exceeds the drive

specification. Otherwise contact the

technical support.

35217

Temperature Sensor Failure Restart the power supply. If the

problem persists, please contact the

technical support

35218

Power Level Overheating Check whether the ambient

temperature exceeds the drive

specification. Otherwise contact the

technical support.

35219

Motor Overheating Fault Check whether the drive is properly

configured (using

THERMODE,THERMTYPE,THER

MTHRESH and THERMTIME), and

if necessary, check whether the motor

temperature sensor is properly

connected to the drive. If the drive is

correctly configured and wired, check

whether the motor specification is too

small.

35220
Internal Power Supply Out of

Range

The drive may need to be repaired.

Please contact the technical support

35221

Out of Range for 5v It may happen during power failure.

In other cases, please contact the

technical support.

35222 Power EEPROM Fault Contact technical support.

35223 Control EEPROM Fault Contact technical support.

35224
CAN Supply Fault The driver may need to be repaired,

please contact the technical support.

35225 Self-Test Failure Contact technical support.

35226

Parameter Memory Verification

Failure

Reconfigure the drive, or download

the parameter set and save the

parameters. If the problem persists,

0 17Troubleshooting

xCoreControl System User Manual 381

please contact the technical support.

35227 Writing to Flash Memory Failure Contact technical support.

35228
Fieldbus Speed Exceeds the

Limit

Enable the drive and send a valid

position command

35229
Not Configured Execute CONFIG after setting drive

parameters

35230 FPGA Config Failed Contact technical support.

35231

Motor Setup Failed Check phase and motor wiring. Make

sure the correct feedback type is

selected. Check MOTORSETUPST

for hints.

35232

Phase Find Failed Check whether the motor feedback

type and the phase-finding

parameters are set correctly for the

application.

35233
FPGA Version Mismatch Update either FPGA version or driver

version.

35234 Emergency Stop Issued Turn off the input.

35235
Fieldbus Version Mismatch Make sure the correct version has

been downloaded to the drive.

35236
ESI Version Mismatch Make sure the correct version has

been downloaded to the drive.

35237
BiSS-C Encoder Internal Error Refer to BiSS-C Encoder User

Manual.

35238
HIPERFACE Encoder Data Error Enter the command HSAVE 1 using

the drive software.

35239

ESI Manufacturer Mismatch Make sure the correct manufacturer

data has been downloaded to the

drive.

35240

Index Line Break Check whether the drive is

configured for working with the

index signal (using MENCTYPE),

and check if the index signal is

connected.

35241 Power Brake Load is Open

35242 Short Circuit of the Power Brake

35243
Stall Fault Remove the stall condition, and take

care to prevent stall conditions.

35244

Secondary Feedback Index Break Check whether the drive is

configured for working with the

index signal on the secondary

encoder, and check if the index signal

is connected.

35245 Secondary Feedback A/B Line Check whether all signals from the

0 17Troubleshooting

382 xCoreControl System User Manual

Break secondary encoder are properly

connected to the drive.

35246

Pulse and Direction Input Line

Break

Check whether all signals to the P&D

inputs are properly connected to the

drive.

35247 Power Brake Fault Replace the motor brake.

35248
Motor Runaway Condition

Detected

Correct MPHASE setting. Activate

and improve the phase find process.

35249

Feedback Communication Error,

Encoder Communication

Disconnected

1. The circuit connection between

the robot body and the control

cabinet is poor. 2. The encoder or

drive may be faulty

Check whether the feedback device is

wired correctly. Check whether the

correct encoder type (MENCTYPE)

is selected.

35250

Nikon Encoder Operational Fault Check whether the feedback device is

wired correctly. Check whether the

correct encoder type (MENCTYPE)

is selected.

35251
Tamagawa Init Failed Check whether the wiring to the

encoder is correct.

35252

A/B Line Break Refer to the section Sine Encoder and

Resolver Diagnostics. Check whether

all signals from the primary feedback

device are properly connected to the

drive.

35253

Invalid Halls Check whether the Hall signals are all

properly connected. While turning the

motor, read the Halls state (using

HALLS) to see which signal is not

connected. If the feedback type is

Tamagawa, check whether the

feedback wiring is correct.

35254

Absolute Encoder Battery

Low-Voltage

The battery is a consumable that

must be replaced regularly. To

purchase, please contact the

manufacturer.

Replace the battery and then reset the

drive. If the battery is replaced while

the drive is on, the position

information is retained.

35255

Phase-Locked Loop

Synchronization Failed

Check for controller synchronization

signal. Check the cable connection

and wiring.

35256

Encoder Simulation Frequency

Too High

Check the parameters used for setting

up the equivalent encoder output. If

using a sine encoder, check the

ENCOUTRES parameter settings.

35257

Tamagawa Abs Operational Fault Check the battery voltage and

feedback wiring. Make sure the

motor did not move at a high velocity

0 17Troubleshooting

xCoreControl System User Manual 383

during encoder initialization.

35258

Custom Absolute Encoder

Operational Fault

Check the battery voltage and

feedback wiring. Make sure the

motor did not move at a high velocity

during encoder initialization.

35259

Differential Halls Line Break Make sure HALLSTYPE matches the

Hall sensors in use (single-ended or

differential). Check whether all

signals from the differential Hall

sensors are properly connected to the

sensor.

35260

Encoder Phase Error Set MENCAQBFILT to 0 to remove

the filter on A and B signals. If

problem persists, it may be due to a

faulty encoder.

35261

AqB Commutation Fault If a fault occurs shortly after motion

begins, check MENCRES settings. If

a fault occurs after some time it is

likely due to EMI noise. Improve the

installation. Make sure ground is

connected. Make sure shield is

connected on feedback and motor

cables.

35262
SensAR Encoder Fault Use command SRVSNSINFO to

identify the fault.

35263

Sine Feedback Communication

Fail

Check whether the data and clock

signals to the EnDat encoder are

connected properly. The cable must

be shielded.

35264

A/B Out of Range Refer to the section Sine Encoder and

Resolver Diagnostics. Check the

amplitudes of the sine and cosine

signals.

35265

Sankyo Absolute Encoder Fault Check the battery voltage and

feedback wiring. Make sure the

motor did not move at a high velocity

during encoder initialization.

35266

Sine Encoder Quadrature Fault Check the feedback device wiring.

Make sure the correct encoder type

(MENCTYPE) is selected.

35267
Sin/Cos Calibration Invalid Re-execute the sine/cosine calibration

process.

35268
Feedback 5V Over-Current The CDHD can source a maximum

current of 250 mA to the primary

0 17Troubleshooting

384 xCoreControl System User Manual

encoder. Check for short-circuit at the

encoder. Check if the encoder is

drawing more than the current limit.

35269 Resolver Initialization Failed Check resolver wiring and gain value.

35270
Endat2X Feedback Fault Reset the encoder including encoder

power off.

35271
Fieldbus Cable Disconnected Reestablish the connection between

controller and drive.

35272
Fieldbus Control Command Lost Clear the fault and allow the

controller to send new commands.

35273
CAN Heartbeat Lost Reconnect master and slave, and

power cycle the drive.

35274 Drive Locked Contact technical support.

35275

EtherCAT Packet Loss Make sure the EtherCAT master

(controller) sends the packets within

the time defined (by the master).

35276 Torque Feedback Out of Limit

35277
Unstable Current Loop Check and modify current controller

settings.

35278

Velocity Over-Speed Exceeded Check whether VLIM is set to match

the application requirements. Using

velocity loop tuning, check for

excessive overshoot.

35279

Exceeded Maximum Velocity

Error

Change drive tuning to improve

velocity tracking, or increase

VEMAX to allow a greater velocity

error.

35280

Exceeded Maximum Position

Error

Change drive tuning to improve

position tracking, or increase

PEMAX to allow a greater position

error.

35281

Secondary Feedback Position

Mismatch

Increase SFBPETHRESH,

STBPETIME.SFBPEMAX, or

improve position tuning.

35282 Excessive PE Value Check tuning.

35283

CAN/EtherCAT State Not

Operational

Make sure the controller does not

switch to a lower state of

communication while the drive is

disabled.

35284 Internal Error Contact technical support.

35285

Motor Plate Read Failed Reconnect the feedback device. Make

sure the motor type nameplate data is

present.

35286 SAVE and Power Cycle Required SAVE and then cycle power to the

0 17Troubleshooting

xCoreControl System User Manual 385

drive.

35287 Realtime Overload Fault Contact technical support.

35288
PFB Off Checksum Invalid If required by the application, home

the machine.

35289
PFB Off Data Mismatch If required by the application, home

the machine.

35290
No PFB Off Data If required by the application, home

the machine.

35291

Pulse Train Frequency Too High Reduce the frequency of the gearing

pulses commanded from the

controller.

35301

Short Circuit of the Drive i. The U, V, and W outputs of the

drive are short-circuited; ii. The

drive is disturbed, which causes the

DI signal to be abnormal. This is a

false alarm; 1. The ground wire is

not connected well; 2. The parameter

setting of the current loop regulator

is not suitable, causing current

oscillation and interference; iii. The

drive is damaged (such as IGBT

short circuit, abnormity in detecting

circuit by the current).

i. Check the U, V, and W wiring of

the drive (for example, after

disconnecting the motor power cable,

observe whether the drive still reports

a short-circuit fault. It must be done

under the premise that the motor's

band-type brake is disconnected to

ensure mechanical safety); ii. Check

the drive IGBT with a multimeter to

confirm whether it is short-circuited;

iii. Standardize the wiring, especially

ground wire; iv. Adjust the

parameters of the current loop; v.

Replace the drive.

35302

Drive Output Short Circuited to

Ground

i. The U, V, and W outputs of the

drive are short circuited to ground; ii.

The drive is damaged (such as

abnormity in detecting circuit by the

current).

i. Check the U, V, and W wiring of

the drive; ii. Replace the drive.

35303

Abnormal Encoder Data i. Hiperface encoder fault; ii.

Encoder wiring error; iii. The

internal AD calibration parameters of

the drive are abnormal.

i. Replace the encoder; ii. Check the

encoder wiring and ensure that it is

correct; iii. Replace the drive.

35304

Rotor Positioning Error i. The setting of position loop,

velocity loop, and current loop

regulator parameters is unreasonable;

ii. The motor parameters are set

incorrectly; iii. The parameter

0x20D2 is set too small; iv. The

parameter 0x2003 is set incorrectly;

v. The peripheral wiring of the drive

is incorrect (such as the motor power

cable and the motor encoder cable);

i. Check the peripheral wiring of the

drive and ensure that it is correct. ii.

Adjust the parameters of the position

loop, velocity loop, and current loop

regulator parameters of the drive, and

ensure that the motor parameters are

set correctly; iii. Re-detect the rotor

position compensation angle; iv.

Increase the setting value of

parameter 0x20D2; v. Replace the

0 17Troubleshooting

386 xCoreControl System User Manual

vi. The internal circuit of the drive is

abnormal; vii. The parameter 0x2207

static balance torque compensation

value is not set properly.

drive; vi. Reduce the setting value of

parameter 0x2207 static balance

torque compensation value.

35305

Abnormal Motor's Band-Type

Brake

i. The motor's band-type brake itself

is abnormal; ii. When the motor is

operating at high velocity, the servo

suddenly turns OFF; iii. The servo

parameters 0x2233 and 0x20D2 are

set too small; iv. A short circuit

occurs in the motor's band-type brake

circuit.

i. Replace the motor's band-type

brake; ii. Increase parameters 0x2233

and 0x20D2; iii. Check the motor's

band-type brake circuit.

35306
EtherCAT PDO Configuration

Error

i. PDO is configured incorrectly. i. Correct the EtherCAT PDO

configuration.

35307

Abnormal Encoder Internal

Communication

a. A fault occurs in the encoder; b.

The motor encoder wiring is

abnormal (such as line break, the

shielded twisted pair cable is not

used, and it is coupled with the

motor power cable); c. The ground

wire of the drive is not reliably

connected; d. Strong interference

sources exist around the drive.

a. Check the wiring of the motor

encoder and ensure that the wiring is

standard and correct; b. Add

magnetic rings to the encoder cable

and the motor power cable; c.

Reliably connect the ground wire of

the drive; d. Replace the motor

encoder; e. Remove the strong

interference sources around the drive,

or independently supply power to the

drive and the surrounding strong

interference sources; f. Add a line

filter to the input power supply of the

drive.

35308
Encoder Type Change i. The encoder type has been

changed.

i. Re-power on or soft reset the drive.

35309

Drive Phase U Over-Current i. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; ii. The motor

parameters are set incorrectly; iii.

The internal current sampling circuit

of the drive is abnormal.

i. Adjust the parameters of the current

loop regulator; ii. Set motor

parameters correctly; iii. Replace the

drive.

35310

Drive Phase V Over-Current i. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; ii. The motor

parameters are set incorrectly; iii.

The internal current sampling circuit

of the drive is abnormal.

i. Adjust the parameters of the current

loop regulator; ii. Set motor

parameters correctly; iii. Replace the

drive.

0 17Troubleshooting

xCoreControl System User Manual 387

35311

Drive Phase W Over-Current i. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; ii. The motor

parameters are set incorrectly; iii.

The internal current sampling circuit

of the drive is abnormal.

i. Adjust the parameters of the current

loop regulator; ii. Set motor

parameters correctly; iii. Replace the

drive.

35312

DC Bus Over-Voltage i. The input power supply voltage of

the drive is too high; ii. The dynamic

braking energy is excessive when the

motor stops quickly; 1. The

deceleration is excessive when the

motor stops; 2. The wiring of the

dynamic braking resistor is incorrect;

3. The value of the dynamic braking

resistance is too high; iii. The

internal voltage sampling circuit of

the drive is abnormal; iv. The

internal dynamic braking circuit of

the drive is abnormal.

i. Adjust the input power supply of

the drive to the permissible range; ii.

Reduce the motor deceleration when

stopping; iii. Check the wiring of the

dynamic braking resistor and ensure

that it is correct; iv. Properly reduce

the resistance of the dynamic braking

resistor (the resistance shall not be

lower than the minimum allowable

value), and increase the power of the

dynamic braking resistor.

35313

Control Power Supply

Under-Voltage

i. The 24V control power supply is

abnormal; ii. The wiring of the 24V

control power supply is incorrect,

such as poor wiring; iii. The load of

the 24V control power supply is

excessive; iv. The internal circuit of

the drive is abnormal.

i. Check the wiring of the 24V

control power supply and ensure that

it is reliable; ii. Check the load of the

24V control power supply and ensure

that the capacity of the 24V control

power supply can meet the load

consumption under all working

conditions. iii. Replace the 24V

control power supply; iv. Replace the

drive.

35314

Drive Continuous Overload i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. There is jamming in the

mechanical load; 3. The motor's

band-type brake is not released; ii.

The motor acceleration and

deceleration time is too short; iii. The

internal current sampling circuit of

the drive is abnormal; iv. The

band-type brake circuit of the drive

is abnormal.

i. Reduce the actual mechanical load

of the motor; ii. Increase the motor

acceleration and deceleration time;

iii. Check the transmission mode of

mechanical load to ensure that there

is no jamming or other abnormal

phenomena; iv. Check the wiring of

the motor's band-type brake to ensure

reliable wiring; v. Replace the motor;

vi. Replace the drive.

35315

Encoder Wiring Error i. For CDA8 V1 products, pin 8 and

pin 15 of the encoder terminal

connector are not short-circuited; ii.

i. For CDA8 V1 products, pin 8 and

pin 15 of the encoder terminal

connector are short-circuited; for

0 17Troubleshooting

388 xCoreControl System User Manual

For CDA8 V2 products and CDR

series products, pin 6 and pin 8 of the

encoder terminal connector are not

short-circuited; iii. The encoder cable

is poorly wired.

CDA8 V2 products and CDR series

products, pin 6 and pin 8 of the

encoder terminal connector are

short-circuited, and reliable encoder

cable wiring shall be ensured.

35316

CPU Overload i. The drive operation is disturbed; ii.

The internal circuit of the drive is

abnormal; iii. The data collection of

DriveStarter is excessive.

i. Standardize the peripheral wiring of

the drive and add anti-interference

measures; ii. Replace the drive; iii.

Close some DriveStarter data

collection channels.

35317

Drive Output Phase Loss i. Line break and poor wiring occur

in the U, V, and W outputs of the

drive; ii. The motor impedance is

excessive; iii. The internal current

sampling circuit of the drive is

abnormal.

i. Check the U, V, and W wiring of

the motor and ensure that it is

reliable; ii. Replace the motor (or

disable drive output phase loss

detection); iii. Replace the drive.

35318

Instantaneous Overload of the

Drive

i. The motor load is excessive; ii.

The internal temperature sampling

circuit of the drive is abnormal; iii.

The operating environment

temperature of the drive exceeds the

permissible operating range; iv. The

drive operation is disturbed (such as

out of sync); v. The motor

acceleration and deceleration are set

too large, and the acceleration and

deceleration time are set too short.

i. Reduce the actual mechanical load

of the motor; ii. Standardize the

peripheral wiring of the drive and add

anti-interference measures; iii.

Reduce the ambient temperature,

such as improving the cooling

conditions of the cabinet; iv. Replace

the drive.

35319

Abnormal External

Communication Transmission of

the Encoder

a. The motor encoder wiring is

abnormal (such as line break, the

shielded twisted pair cable is not

used, and it is coupled with the

motor power cable); b. The ground

wire of the drive is not reliably

connected; d. Strong interference

sources exist around the drive.

a. Check the wiring of the motor

encoder and ensure that the wiring is

standard and correct; b. Add

magnetic rings to the encoder cable

and the motor power cable; c.

Reliably connect the ground wire of

the drive; d. Remove the strong

interference sources around the drive,

or independently supply power to the

drive and the surrounding strong

interference sources; e. Add a line

filter to the input power supply of the

drive.

35320

Abnormal External

Communication Reception of the

Encoder

a. The motor encoder wiring is

abnormal (such as line break, the

shielded twisted pair cable is not

used, and it is coupled with the

a. Check the wiring of the motor

encoder and ensure that the wiring is

standard and correct; b. Add

magnetic rings to the encoder cable

0 17Troubleshooting

xCoreControl System User Manual 389

motor power cable); b. The ground

wire of the drive is not reliably

connected; d. Strong interference

sources exist around the drive.

and the motor power cable; c.

Reliably connect the ground wire of

the drive; d. Remove the strong

interference sources around the drive,

or independently supply power to the

drive and the surrounding strong

interference sources; e. Add a line

filter to the input power supply of the

drive.

35321

Drive Hardware Over-Current i. There is jamming or locking in the

mechanical load; ii. The rotor

compensation angle is set

incorrectly; iii. Encoder wiring error;

iv. The current loop regulator

parameters are set unreasonably,

resulting in current control

oscillation; v. Motor parameter

setting error (wire resistance, wire

inductance, counter electromotive

force, etc.); vi. The internal current

detection circuit of the drive is

abnormal; vii. The drive's band-type

brake circuit is damaged, without

24V output; viii. The motor's

band-type brake is damaged; ix. The

motor load is too large, or the motor

acceleration and deceleration are set

too large, and the acceleration and

deceleration time are set too short; x.

The setting of 0x60B2 torque

compensation value or 0x2207 static

balance torque compensation value is

unreasonable.

i. Check the transmission mode of

mechanical load to ensure that there

is no jamming or other abnormal

phenomena; ii. Re-detect the rotor

compensation angle; iii. Check the

wiring of the motor encoder and

ensure that the wiring is standard and

correct; iv. Adjust the parameters of

the current loop regulator; v. Set

motor parameters correctly; vi.

Replace the drive; vii. Replace the

motor; vii. Check the transmission

mode of mechanical load to ensure

that there is no jamming or other

abnormal phenomena; viii. Confirm

whether the mechanical design is

reasonable; optimize motor

acceleration and deceleration, and

extend the acceleration and

deceleration time; ix. Optimize the

dynamics model of the upper

controller and the torque

compensation value of the given

0x60B2; or reasonably reset the

0x2207 static balance torque

compensation value.

35322

Abnormal Band-Type Brake

Circuit of the Drive

i. The drive's band-type brake output

is short circuited; ii. Excessive

band-type brake output current of the

drive causes over-temperature; iii.

The drive's band-type brake output is

open circuit; iv. The internal

detection circuit of the drive is

abnormal.

i. Check the wiring of the drive's

band-type brake output and ensure it

is correct and reliable; ii. Replace the

drive.

35323 Abnormal Resolver Circuit of the i. The internal resolver circuit of the i. Correctly set the resolver

0 17Troubleshooting

390 xCoreControl System User Manual

Drive drive is abnormal; ii. The resolver

parameter setting of the drive does

not match the actual resolver.

parameters of the drive; ii. Replace

the drive.

35324

Control Mode Setting Error i. When the servo is enabled, the

controller sets the control mode that

the drive does not support (see the

object dictionary 0x6502 for the

control mode supported by each

product).

i. Before enabling the servo, set the

controller to the correct control mode.

35325

Input Phase Loss Fault i. The input power supply of the

drive is poorly wired; ii. The drive

servo parameter "power circuit

setting" is set to three-phase input,

but the actual power supply input is

single-phase; iii. The front end uses

an electronic transformer, which has

abnormal harmonics and cannot be

identified by the servo.

i. Check the input power wiring of

the drive and ensure that it is reliable;

ii. Set the servo parameter "power

circuit setting" correctly; iii. Add a

filter to the front end of the servo

drive.

35326

DC Bus Under-Voltage i. The input power supply voltage of

the drive is too low; ii. The internal

voltage sampling circuit of the drive

is abnormal; iii. Servo parameter

0x202C is set incorrectly, 220V

power supply is set as 380V power

supply; iv. The input power cord of

the drive is disconnected.

i. Adjust the input power supply of

the drive to the permissible range; ii.

Replace the drive; iii. Set 0x202C

drive parameters correctly; iv. Check

the input power cord wiring of the

drive.

35327

Inverter Power Module

Over-Temperature

i. The motor load is excessive; ii.

The internal temperature sampling

circuit of the drive is abnormal; iii.

The operating environment

temperature of the drive exceeds the

permissible operating range.

i. Reduce the actual mechanical load

of the motor; ii. Reduce the ambient

temperature, such as improving the

cooling conditions of the cabinet; iii.

Replace the drive.

35328

Dynamic Braking Overload i. The motor performs frequent quick

stop operations, resulting in

excessive dynamic braking energy;

ii. The servo parameters "resistance

of the dynamic braking resistor" and

"power of the dynamic braking

resistor" are set incorrectly.

i. Correctly set the servo parameters

"resistance of the dynamic braking

resistor" and "power of the dynamic

braking resistor"; ii. Change the

operating conditions of the motor to

avoid frequent quick stop operations

of the motor, such as extending the

stop time of the motor.

35329

Continuous Overload of Motor i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. There is jamming in the

mechanical load; 3. The motor's

i. Reduce the actual mechanical load

of the motor; ii. Increase the

acceleration and deceleration time

when the motor is running; iii. Check

0 17Troubleshooting

xCoreControl System User Manual 391

band-type brake is not released; ii.

The motor acceleration and

deceleration time is too short; iii.

Motor parameters are set incorrectly;

iv. The internal current sampling

circuit of the drive is abnormal; v.

The band-type brake circuit of the

drive is abnormal; vi. The selected

motor type is not suitable and the

power is too small (for example,

high-power drives with small-power

motors, which operate at high

velocity with full load for a long

time).

the transmission mode of mechanical

load to ensure that there is no

jamming or other abnormal

phenomena; iv. Check the wiring of

the motor's band-type brake to ensure

reliable wiring; v. Check the motor

parameters to ensure that they are set

correctly (such as the rated current

and thermal time constant of the

motor); vi. Replace with a

high-capacity motor; vii. Replace the

drive.

35330

Rectifier Power Module

Over-Temperature

i. The motor load is excessive; ii.

The internal temperature sampling

circuit of the drive is abnormal; iii.

The operating environment

temperature of the drive exceeds the

permissible operating range

i. Reduce the actual mechanical load

of the motor; ii. Reduce the ambient

temperature, e.g. improve the heat

dissipation conditions of the cabinet;

iii. Replace the drive.

35331

Motor U– Phase Instantaneous

Overload

i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. The mechanical load leads to

jamming or locking; 3. The motor's

band-type brake is not released; ii.

The motor acceleration and

deceleration time is too short; iii. The

rotor offset angle is set incorrectly;

iv. The motor parameter is set

incorrectly. v. The internal current

sampling circuit of the drive is

abnormal; vi. The drive's band-type

brake circuit is abnormal; vii.

Inadequate capacity of the motor

model selected; viii. Poor or

detached contact of one phase of the

motor power line.

i. Reduce the actual mechanical load

of the motor; ii. Increase the

acceleration and deceleration time

durations during motor operation; iii.

Check the transmission mode of

mechanical load to ensure that there

is no jamming or other phenomena;

iv. Re-check the rotor offset angle; v.

Check the wiring of the motor's

band-type brake to ensure reliable

wiring; vi. Check the motor

parameters to ensure that they are set

correctly (such as the rated current,

fast overload protection threshold,

and fast overload protection time

duration of the motor); vii. Change to

a high–capacity motor; viii. Replace

the drive; ix. Check whether the

wiring of motor power line is reliable.

35332

Motor V– Phase Instantaneous

Overload

i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. The mechanical load leads to

jamming or locking; 3. The motor's

band-type brake is not released; ii.

i. Reduce the actual mechanical load

of the motor; ii. Increase the

acceleration and deceleration time

durations during motor operation; iii.

Check the transmission mode of

0 17Troubleshooting

392 xCoreControl System User Manual

The motor acceleration and

deceleration time is too short; iii. The

rotor offset angle is set incorrectly;

iv. The motor parameter is set

incorrectly. v. The internal current

sampling circuit of the drive is

abnormal; vi. The drive's band-type

brake circuit is abnormal; vii.

Inadequate capacity of the motor

model selected; viii. Poor or

detached contact of one phase of the

motor power line.

mechanical load to ensure that there

is no jamming or other phenomena;

iv. Re-check the rotor offset angle; v.

Check the wiring of the motor's

band-type brake to ensure reliable

wiring; vi. Check the motor

parameters to ensure that they are set

correctly (such as the rated current,

fast overload protection threshold,

and fast overload protection time

duration of the motor); vii. Change to

a high–capacity motor; viii. Replace

the drive; ix. Check whether the

wiring of motor power line is reliable.

35333

Motor W– Phase Instantaneous

Overload

i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. The mechanical load leads to

jamming or locking; 3. The motor's

band-type brake is not released; ii.

The motor acceleration and

deceleration time is too short; iii. The

rotor offset angle is set incorrectly;

iv. The motor parameter is set

incorrectly. v. The internal current

sampling circuit of the drive is

abnormal; vi. The drive's band-type

brake circuit is abnormal; vii.

Inadequate capacity of the motor

model selected; viii. Poor or

detached contact of one phase of the

motor power line.

i. Reduce the actual mechanical load

of the motor; ii. Increase the

acceleration and deceleration time

durations during motor operation; iii.

Check the transmission mode of

mechanical load to ensure that there

is no jamming or other phenomena;

iv. Re-check the rotor offset angle; v.

Check the wiring of the motor's

band-type brake to ensure reliable

wiring; vi. Check the motor

parameters to ensure that they are set

correctly (such as the rated current,

fast overload protection threshold,

and fast overload protection time

duration of the motor); vii. Change to

a high–capacity motor; viii. Replace

the drive; ix. Check whether the

wiring of motor power line is reliable.

35334

Abnormal Communication of the

Power Supply Unit Module

i. Poor connection of the control

cable between the power supply unit

module and the motor module; ii.

The control port between the power

supply module and the motor module

is burnt due to short circuit of the

motor's band-type brake cable or

external 24V (STO) to ground.

i. Check the control cable connection

between the power supply unit

module and the motor module and

ensure the wiring is reliable; ii Check

for short circuit to ground on the

motor's band-type brake cable or

external 24V (STO); iii. Replace the

drive.

35335

Hardware STO1 Triggered i. STO1 is triggered or is poorly

wired.

i. Check STO1 wiring and make sure

the wiring is reliable; ii. Verify that

the STO1 circuit (e.g. emergency stop

0 17Troubleshooting

xCoreControl System User Manual 393

switch) is not triggered.

35336

Hardware STO2 Triggered i. STO2 is triggered or is poorly

wired.

i. Check the STO2 wiring and make

sure the wiring is reliable; ii. Verify

that the STO2 circuit (e.g. emergency

stop switch) is not triggered.

35337
Abnormal STO Wiring i. STO1/STO2 is poorly wired. i. Check STO1/STO2 wiring and

make sure the wiring is reliable.

35338

Drive External Fault i. Fault of other axes. ii. Abnormal

internal circuit of the drive.

i. Check other axes and make sure

they are free of fault; ii. Such fault

can be disabled by modifying the

servo parameter "Fault operation

switch"; iii. Replace the drive.

35339

Excessive Position Tracking

Error

i. The mechanical load of the motor

leads to jamming or locking, so that

the motor cannot operate; ii. The

planned acceleration for the target

position value of the host computer

is too high; iii. The servo parameters

0x6065 and 0x6066 are too small; iv.

Unreasonable setting of the drive

regulator parameters leads to

unsatisfactory position tracking

performance; v. The internal circuit

of the drive is abnormal.

i. Check the transmission mode of

mechanical load to ensure that there

is no jamming or other issue; ii.

Appropriately reduce the planned

acceleration for the target position

value of the host computer; iii.

Appropriately increase the setting

value of the servo parameters 0x6065

and 0x6066; iv. Optimize regulator

parameters to improve position

tracking performance; v. Replace the

drive.

35340

Position Control Overflow i. The actual or target value of the

position exceeds the maximum

permissible range.

i. Execute the "encoder multi-turn

zeroing" command and ensure that

the motor operating range does not

exceed the maximum permissible

range; ii. If it is necessary to operate

the motor in a large range, the

unlimited position control mode can

be enabled through the servo

parameter "position control switch".

35341

Excessive Velocity Tracking

Error

i. The mechanical load of the motor

leads to jamming or locking, so that

the motor cannot operate; ii. The

setting values of the servo

parameters 0x20A3 and 0x20A4 are

too small; iii. Unreasonable setting

of the drive regulator parameters

leads to unsatisfactory velocity

tracking performance; iv. The

internal circuit of the drive is

abnormal.

i. Check the transmission mode of

mechanical load to ensure that there

is no jamming or other phenomena;

ii. Appropriately increase the setting

values of the servo parameters

0x20A3 and 0x20A4; iii. Optimize

the regulator parameters to improve

velocity tracking performance; iv.

Replace the drive.

0 17Troubleshooting

394 xCoreControl System User Manual

35342

Control Cycle Parameter Setting

Error

i. Unreasonable setting of the

EtherCAT communication cycle,

position control cycle and velocity

control cycle.

i. Set the EtherCAT communication

cycle, position control cycle and

velocity control cycle correctly.

35343

EEPROMWriting Failed i. The internal circuit of the drive is

abnormal; ii. The drive is interfered

i. Replace the drive; ii. Re-power on

the drive and improve the

anti-interference measures of the

drive.

35344

Origin Searching Failed i. Unreasonable parameter setting of

origin searching (objects 0x6098,

0x6099, 0x609A); ii. The motor is

already in the limit switch trigger

state when the origin searching is

activated; iii. Switch to non-HM

mode during origin searching.

i. Set the origin searching parameters

correctly (objects 0x6098, 0x6099,

0x609A); ii. Ensure that the motor is

not in the limit switch trigger state

when the origin searching is

activated.

35345

Illegal EtherCAT Bus Instruction i. The EtherCAT communication

state machine is incorrectly matched

with the control word time sequence.

i. The host computer correctly

handles the EtherCAT

communication state computer and

control word time sequence.

35346

Abnormal DriveStarter

Communication

i. The drive commissioning cable is

disconnected or is poorly contacted.

ii. The communication of the drive

commissioning serial port is

interfered.

i. Check the wiring of the drive

commissioning cable and ensure

reliable connection; ii. Replace

isolated serial port commissioning

cable; iii. Strengthen anti-interference

measures for the commissioning

cable, such as adding magnetic rings,

reliable grounding of commissioning

computer, and provide power supply

for the debugging computer and the

drive separately.

35347

Abnormal Communication of the

EtherCAT Bus

i. The EtherCAT communication is

interfered; ii. Disconnection or poor

contact of EtherCAT network cables;

iii. Insufficient real-time

performance of the host computer;

iv. Mismatch between the underlying

DC synchronization mechanism of

the EtherCAT master of the host

computer and the drive requirements;

v. The internal circuit of the drive is

abnormal.

i. Optimize EtherCAT

communication wiring and strengthen

anti-interference measures, such as

using Category 5E shielded twisted

pair network cables and ensuring

reliable grounding of the controller;

ii. Check the connection of EtherCAT

network cables to ensure reliable

connection; iii. Change to the host

computer with stronger real-time

performance, or extend the EtherCAT

communication cycle; iv.

Appropriately increase the servo

parameter 0x20D3 setting value; v.

0 17Troubleshooting

xCoreControl System User Manual 395

Modify the underlying DC

synchronization mechanism of the

EtherCAT master of the host

computer to ensure that the RxPDO

data sent by the host computer is at

least 130 μ s ahead of the DC

synchronization signal; vi. Replace

the drive.

35348
The Position Exceeds the

Hardware Limitation

i. Limit switch input triggered. i. Check the state of the limit switch

and ensure that it is not triggered.

35349

Positive Software Limitation i. The actual position value exceeds

the threshold set by the servo

parameters 0x2004 and 0x2005.

i. Appropriately increase the setting

value of the servo parameters 0x2004

and 0x2005; ii. Operate the motor

within the range specified by the

servo parameters 0x2004 and

0x2005; iii. If users do not want to

use this function, they can disable the

software limitation detection function

through the servo parameter "Position

control switch".

35350

Negative Software Limitation i. The actual position value exceeds

the threshold set by the servo

parameters 0x2004 and 0x2005.

i. Appropriately increase the setting

value of the servo parameters 0x2004

and 0x2005; ii. Operate the motor

within the range specified by the

servo parameters 0x2004 and

0x2005; iii. If users do not want to

use this function, they can disable the

software limitation detection function

through the servo parameter "Position

control switch".

35351

Excessive Power-On Position

Deviation

i. After the drive is powered off, the

motor position is shifted; ii. For

motor encoders with batteries, the

external battery is unavailable or the

battery is under-voltage.

i. For motor encoders with batteries,

ensure the battery is connected and

the battery voltage is normal; ii. If

users don't want to use this function,

they can set the servo parameter

0x200E to 0, and disable the

detection function of excessive

power-on position deviation.

35352

Power-On Position Control

Overflow

i. For motor encoders with batteries,

the external battery is unavailable or

the battery is under-voltage; ii. The

drive is powered off in any of the

following control mode: the

unlimited position control mode,

i. Re-power on the drive after the

encoder multi-turn zeroing command

is executed; ii. In the unlimited

position control mode, if users do not

want to use this function, they can

modify the servo parameter "Position

0 17Troubleshooting

396 xCoreControl System User Manual

velocity mode, or torque mode, and

the position has exceeded the

permissible range.

control switch" to disable the

power-on position control overflow

detection function.

35353

Encoder Battery Under-Voltage

Fault

i. The encoder is not connected with

an external battery or the battery is

poorly wired; ii. The encoder battery

is under-voltage.

i. Check the battery wiring of the

encoder to ensure reliable wiring; ii.

Replace the battery; iii. If a Panasonic

or Tamagawa encoder is connected,

the encoder multi-turn zeroing

command needs to be executed for

individual versions; iv. If users do not

want to use this function, they can

modify the servo parameter 0x2009

to disable the encoder battery

under-voltage detection function.

35354

The Motor Exceeds the Velocity

Limit

i. Unreasonable setting of drive

regulator parameters leads to large

speed tracking overshoot; ii. Poor

wiring of the encoder; iii. The

encoder data transmission is

interfered; iv. The encoder is

damaged; v. The internal circuit of

the drive is abnormal.

i. Optimize regulator parameters to

improve speed tracking performance;

ii. Check the encoder cable

connection to ensure reliable wiring;

iii. Strengthen the anti-interference

measures of encoder cables, such as

adding magnetic rings, using shielded

twisted pair cables, and realizing

reliable grounding; iv. Replace the

encoder; v. Replace the drive.

35355

Excessive Voltage Limit Position

Tracking Error

i. The mechanical load of the motor

is jammed so that the motor cannot

operate; ii. The planned acceleration

of the host computer's target position

value is too high; iii. The servo

parameters 0x6065 and 0x6066 are

too small. iv. Unreasonable setting of

drive regulator parameters leads to

unsatisfactory position tracking

performance; v. The input power

supply voltage of the drive is too

low; vi. The internal circuit of the

drive is abnormal.

i. Check the transmission mode of

mechanical load to ensure that there

is no jamming or other phenomena;

ii. Appropriately reduce the planned

acceleration of the host computer's

target position value; iii.

Appropriately increase the setting

value of the servo parameters 0x6065

and 0x6066; iv. Optimize regulator

parameters to improve position

tracking performance; v. Ensure that

the input power supply voltage of the

drive is within the specified range; vi.

Replace the drive.

35356

Encoder Over-Speed Fault i. Unreasonable setting of drive

regulator parameters leads to large

speed tracking overshoot; ii. Poor

wiring of the encoder; iii. The

encoder data transmission is

interfered; iv. The encoder is

i. Optimize regulator parameters to

improve speed tracking performance;

ii. Check the encoder cable

connection to ensure reliable wiring;

iii. Strengthen the anti-interference

measures of encoder cables, such as

0 17Troubleshooting

xCoreControl System User Manual 397

damaged; v. The internal circuit of

the drive is abnormal; vi. When the

servo motor is enabled, an external

force rotates the motor shaft.

adding magnetic rings, using shielded

twisted pair cables, and realizing

reliable grounding; iv. Replace the

encoder; v. Replace the drive; vi.

Check the mechanical load at the end

of the motor shaft to ensure that the

motor shaft is not subjected to gravity

or external mechanical forces.

35357

Operation Error of Position

Planning

i. Unreasonable setting of position

planning parameters, such as the

target position value and the planned

target deceleration (0x6084).

i. Set position planning parameters

correctly.

35358
Multi-Axis Synchronization

Exception

i. The internal circuit of the drive is

abnormal.

ii. Replace the drive.

35359

EtherCAT Bus Synchronization

Exception

i. Unreasonable setting of the servo

parameter 0x20D3; ii. The EtherCAT

master synchronization mode is

incorrectly configured.

i. Set the servo parameter 0x20D3

correctly; ii. Correctly configure the

synchronization mode of the

EtherCAT master.

35360 EEPROM Version Change i. The drive firmware is upgraded. i. Re-power on the drive.

35361

Motor Overload Alarm i. The motor load is excessive; 1. The

actual mechanical load is excessive;

2. The mechanical load leads to

jamming; 3. The motor's band-type

brake is not released; ii. The motor

acceleration and deceleration time is

too short; iii. The motor parameter is

set incorrectly; iv. The internal

current sampling circuit of the drive

is abnormal; v. The drive ’ s

band-type brake circuit is abnormal.

i. Reduce the actual mechanical load

of the motor; ii. Prolong the

acceleration and deceleration time

durations during motor operation; iii.

Check the transmission mode of

mechanical load to ensure that there

is no jamming or other phenomena;

iv. Check the wiring of the motor's

band-type brake to ensure reliable

wiring; v. Check the motor

parameters to ensure that they are set

correctly (such as the rated current

and thermal time constant of the

motor); vi. Change to a high-capacity

motor. Vii. Replace the drive.

35362

Speed Limit Alarm i. In the speed mode, the target speed

exceeds the maximum speed of the

motor; ii. In the position mode, the

planned speed exceeds the maximum

speed of the motor; iii. Servo

parameter setting is unreasonable.

i. Reduce the target or planned speed;

ii. Change to a motor with higher

maximum speed; iii. Reset the

maximum planned speed of the

parameter 0x607F according to the

actual situation.

35363

DC Bus Under-Voltage Alarm i. The input power supply voltage of

the drive is too low; ii. The internal

voltage sampling circuit of the drive

is abnormal.

i. Adjust the input power supply of

the drive to the permissible range; ii.

Replace the drive.

0 17Troubleshooting

398 xCoreControl System User Manual

35364

Control Mode Setting

Unsupported

i. (Delete when the servo motor is

enabled) The controller sets the

control mode that the drive does not

support (see the object dictionary

0x6060 and 0x6502 for the control

mode supported by each product); ii.

The control mode is not specified

after the communication between the

controller and the servo motor is

established.

i. Before enabling the servo, set the

controller to the correct control mode.

35365
Effective Parameters for

Re-Power-On Changed

i. Servo parameters for re-power-on

modified

i. Re-power on the drive

35366

Encoder Battery Under-Voltage

Alarm

i. The encoder is not connected with

an external battery or the battery is

poorly wired; ii. The encoder battery

is under-voltage; iii. The encoder

battery cables are wired reversely or

short circuited to ground due to the

damaged sheath.

i. Check the battery wiring of the

encoder to ensure reliable wiring; ii.

Replace the battery; iii. If a Panasonic

or Tamagawa encoder is connected,

the encoder multiturn zeroing

command needs to be executed for

individual versions; iv. If users do not

want to use this function, they can

modify the servo parameter 0x2009

to disable the encoder battery

under-voltage detection function.

35367
Drive Internal Alarm i. The internal circuit of the drive is

abnormal.

i. Replace the drive; ii. Contact the

after-sales for technical support.

35368

Mechanical Zero Uncalibrated i. The encoder battery failed due to

under-voltage, and the servo

parameter 0x2009.Byte3 is set to

"Encoder battery under-voltage fault

is detected and zero uncalibrated is

informed"; ii. There is a fault of

excessive deviation of the power-on

position and the user determined that

the mechanical zero is lost; iii. The

motor features a single-turn absolute

encoder and the driver failed to

execute the origin searching

instruction.

i. Zero the drive.

35369

Encoder receiving external

communication alarm

a. The motor encoder wiring is

abnormal (such as line break, the

shielded twisted pair cable is not

used, and it is coupled with the

motor power cable); b. The ground

wire of the drive is not reliably

Encoder receiving external

communication alarm

0 17Troubleshooting

xCoreControl System User Manual 399

connected; d. Strong interference

sources exist around the drive.

35370

Encoder Sending External

Communication Alarm

a. The motor encoder wiring is

abnormal (such as line break, the

shielded twisted pair cable is not

used, and it is coupled with the

motor power cable); b. The ground

wire of the drive is not reliably

connected; d. Strong interference

sources exist around the drive.

a. Check the wiring of the motor

encoder and ensure that the wiring is

standard and correct; b. Add

magnetic rings to the encoder cable

and the motor power cable; c.

Reliably connect the ground wire of

the drive; d. Remove the strong

interference sources around the drive,

or independently supply power to the

drive and the surrounding strong

interference sources; e. Add a line

filter to the input power supply of the

drive.

35371

Encoder internal communication

alarm

Encoder internal communication

alarm

a. Check the wiring of the motor

encoder and ensure that the wiring is

standard and correct; b. Add

magnetic rings to the encoder cable

and the motor power cable; c.

Reliably connect the ground wire of

the drive; d. Replace the motor

encoder; e. Remove the strong

interference sources around the drive,

or independently supply power to the

drive and the surrounding strong

interference sources; f. Add a line

filter to the input power supply of the

drive.

35372

Software Limitation Alarm i. The actual or target position value

exceeds the threshold set by the

servo parameters 0x2004 and

0x2005.

i. Appropriately increase the setting

value of the servo parameters 0x2004

and 0x2005; ii. Operate the motor

within the range specified by the

servo parameters 0x2004 and

0x2005; iii. Reduce the target

position value so that it falls within

the range specified by the servo

parameters 0x2004 and 0x2005; iv. If

users do not want to use this function,

they can disable the software

limitation detection function through

the servo parameter "Position control

switch".

35373 AD Correction Coefficient i. The drive is not subjected to AD i. Reset the drive AD correction

0 17Troubleshooting

400 xCoreControl System User Manual

Invalid Alarm correction. coefficient

35374
Abnormal position planning

parameter alarm

i. Unreasonable setting of position

planning parameters.

i. Set position planning parameters

correctly.

35375

Excessive power-on position

deviation alarm

i. The motor position deviates after

the drive is powered off.

i. The drive executes the fault reset

command; ii. Re-power on or

perform the soft reset of the drive.

35401

Short Circuit of the Drive 1. The U/V/W output cable of the

drive is short-circuited, or

short-circuited to ground; 2. The

U/V/W output cable of the motor is

short-circuited, or short-circuited to

ground; 3. An internal cable of the

drive is short-circuited, or

short-circuited to ground; 4. False

alarm is caused because the drive is

interfered

1. If a short circuit occurs between

the cable's UVW phases, or between

the cable's U/V/W and grounding,

dispose or replace the cable; 2. If a

short circuit occurs between the

motor's UVW phases, or between the

motor's U/V/W cable and grounding,

replace the motor; 3. If faults still

occur after disconnecting the drive

U/V/W output wiring, replace the

drive; 4. Improve the electromagnetic

environment of the equipment by

standardizing wiring and cabling,

increasing the cross-sectional area of

the grounding wire and adding

magnetic rings.

35402

Excessive U-Phase Output

Current

1. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; 2. The motor

parameters are set incorrectly; 3. The

internal current sampling circuit of

the drive is abnormal.

1. Adjust the parameters of the

current loop regulator; 2. Set motor

parameters correctly; 3. Replace the

drive

35403

Excessive V-Phase Output

Current

1. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; 2. The motor

parameters are set incorrectly; 3. The

internal current sampling circuit of

the drive is abnormal.

1. Adjust the parameters of the

current loop regulator; 2. Set motor

parameters correctly; 3. Replace the

drive

35404

Excessive W-Phase Output

Current

1. The parameter setting of the

current loop regulator is

unreasonable, leading to the current

control oscillation; 2. The motor

parameters are set incorrectly; 3. The

internal current sampling circuit of

the drive is abnormal.

1. Adjust the parameters of the

current loop regulator; 2. Set motor

parameters correctly; 3. Replace the

drive

35405 Drive Hardware Over-Current 1. Excessive motor load or motor 1. Check and handle the mechanical

0 17Troubleshooting

xCoreControl System User Manual 401

acceleration and deceleration setting

values, and too short acceleration

and deceleration time durations set;

2. The rotor offset angle is set

incorrectly, and fails to meet the

rotor positioning error detection

condition; 3. Abnormal jumps occur

in the encoder feedback; 4. The

current loop regulator parameters are

set unreasonably, resulting in current

control oscillation; 5. Motor

parameters are incorrectly set (wire

resistance, wire inductance, counter

electromotive force, rotor inertia,

etc.); 6. Current detection circuit

inside the drive is abnormal or the

drive's band-type brake circuit is

damaged, without 24V output; 7. The

motor's band-type brake is damaged;

8. The torque offset value or static

balance offset value is not set

properly.

load driving to ensure that there is no

jamming or other phenomena; 2.

Re-detect the rotor offset angle; 3.

Check the motor encoder wiring and

ensure that it is standard and correct;

4. Adjust current loop regulator

parameters; 5. Set motor parameters

correctly; 6. Replace the drive; 7.

Replace the motor; 8. Optimize the

host controller dynamics model, and

optimize the given value or set the

value according to the actual load.

35406

Drive Output Short Circuited to

Ground

1. The drive U/V/W output cable is

short-circuited to ground; 2. The

motor U/V/W cable is short circuited

to ground; 3. There is a short circuit

inside the drive or a short circuit to

ground.

1. If a short circuit occurs between

the cable's U/V/W and grounding,

repair or replace the cable; 2. If a

short circuit occurs between the

motor's U/V/W cable and grounding,

replace the motor; 3. If faults still

occur after disconnecting the drive

U/V/W output wiring, replace the

drive.

35407

DC Bus Over-Voltage 1. Excessive input power supply

voltage of the drive; 2. Excessive

dynamic braking energy when the

motor stops quickly; 3. The dynamic

braking resistor is not connected or

wired incorrectly; 4. The over-high

resistance value of the dynamic

braking resistor; 5. Internal

malfunction of the drive.

1. Adjust the input power supply of

the drive to the permissible range; 2.

Reduce the motor deceleration when

stopping; 3. Correct the wiring of

dynamic braking resistor to ensure

correct wiring; 4. Reduce the

resistance value of the dynamic

braking resistor appropriately (the

resistance value cannot be lower than

the minimum permissible value) and

increase the power of the dynamic

braking resistor; 5. Replace the drive.

35408 DC Bus Under-Voltage 1. Excessively low input power 1. Adjust the input power supply of

0 17Troubleshooting

402 xCoreControl System User Manual

supply voltage of the drive; 2.

Abnormal voltage sampling circuit

inside the drive; 3. The drive power

loop is set incorrectly, and the 220 V

power supply is set to 380 V power

supply; 4. The input power supply

cord of the drive is disconnected.

the drive to the permissible range for

normal working; 2. Replace the drive;

3. Set the drive power loop in

consistent with the actual power

supply; 4. Check and handle the

wiring of the input power supply cord

of the drive to ensure that the wiring

is correct and secure.

35409

Power Module Over-Temperature 1. The motor load is excessive; 2.

The internal temperature sampling

circuit of the drive is abnormal; 3.

The operating environment

temperature of the drive exceeds the

permissible range.

1. Reduce the actual mechanical load

of the motor; 2. Replace the drive; 3.

Reduce the ambient temperature,

such as improving the heat

dissipation conditions of the cabinet.

35410 CPU1 Watchdog Overflow Internal malfunction of the drive. Replace the drive.

35411 CPU2 Watchdog Overflow Internal malfunction of the drive. Replace the drive.

35412

Dynamic Braking Resistor

Overload

1. The frequent quick shutdown of

the motor leads to excessive dynamic

braking energy; 2. The power setting

of the dynamic braking resistor is

inconsistent with that of the actual

resistor.

1. Change the operating conditions of

the motor to avoid frequent quick

shutdown of the motor, such as

extending the stop time of the motor.

Or replace the dynamic braking

resistor with one of a higher power;

2. Set the power of dynamic braking

resistor correctly, with the value set

in consistent with the actual power of

the dynamic braking resistor.

35413

Continuous Overload of Motor 1. Excessive motor load; 2.

Over-short acceleration and

deceleration time durations of the

motor; 3. Incorrect setting of motor

parameters; 4. Abnormal release

action of the band-type brake; 5.

Wrong motor model with a smaller

power (such as the high-power drive

loaded with the small-power motor

runs at full load and high speed for a

long time); 6. Abnormal internal

current sampling circuit of the drive.

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2. Prolong

the acceleration and deceleration time

durations during motor operation; 3.

Check the motor parameters to ensure

that the motor parameters are set

correctly (such as the rated current

and thermal time constant of the

motor); 4. Check the line of the

band-type brake of the motor to

ensure normal action of the band-type

brake; 5. Change to a high–capacity

motor; 6. Replace the drive

35414

Excessive Position Tracking

Error

1. Excessive motor load; 2.

Inappropriate control parameters; 3.

Abnormal release action of the

band-type brake; 4. Too small

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2.

Optimize the control parameters and

0 17Troubleshooting

xCoreControl System User Manual 403

threshold or time duration for

judging excessive position tracking

error.

enhance the corresponding

performance of the servo; 3. Check

the line of the band-type brake of the

motor to ensure normal action of the

band-type brake; 4. Appropriately

increase the threshold or time

duration for judging excessive

position tracking error.

35415

Positive Software Limitation Position feedback value exceeds

(positive software limitation value +

positioning completion threshold).

The range of motion should not

exceed the setting value for positive

software limitation. If the positive

software limitation function is not

needed, it can be prohibited by the

parameter position control switch.

35416

Negative Software Limitation Position feedback value exceeds

(negative software limitation value -

positioning completion threshold).

The range of motion should not

exceed the setting value for negative

software limitation. If the negative

software limitation function is not

needed, it can be prohibited by the

parameter position control switch.

35417

Encoder Data Overflow In position mode, the encoder

multiturn value exceeds the actual

encoder multiturn bits when

unlimited position control is not

enabled.

Perform the encoder multiturn

zeroing operation, or enable the

unlimited position control mode, or

work in a non-position mode (torque

mode or speed mode).

35418

CPU1 Operation Fault 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35419

CPU2 Operation Fault 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35420

CPU1 Memory Fault 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35421

CPU2 Memory Fault 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35422

CPU Memory Conflict 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35423

Magnetic Pole Positioning Error 1. The setting value of the rotor

position compensation angle of the

motor is inconsistent with the

detected value; 2. The detection

1. Re-detect the motor rotor position

compensation angle and set it

correctly; 2. Appropriately increase

the sensitivity setting value of rotor

0 17Troubleshooting

404 xCoreControl System User Manual

sensitivity for rotor positioning fault

is too low; 3. The setting of static

balance torque compensation value is

inconsistent with the actual load; 4.

The wrong wiring of the motor leads

to the change of rotor phase angle; 5.

The motor malfunction leads to the

change of rotor phase angle; 6. The

gravity load causes rotation of the

motor at the instant when the servo is

enabled, and the speed exceeds the

threshold of rotor positioning fault

detection sensitivity.

positioning fault detection; 3. Set the

static balance torque compensation

value correctly according to the

actual load; 4. Correct wiring, and

re-detect the motor rotor position

compensation angle; 5. Replace the

motor; 6. Set the static balance torque

compensation value correctly

according to the actual load.

35424

Abnormal Encoder Data 1. Abnormal encoder data; 2.

Encoder cable sequence error or poor

contact; 3. Abnormal encoder data

due to noise interference.

1. Replace the motor or encoder; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and routing, increasing the

cross-sectional area of grounding

wire and adding magnetic rings.

35425

Abnormal encoder

communication

1. Abnormal encoder data; 2.

Encoder cable sequence error or poor

contact; 3. Abnormal encoder data

due to noise interference.

1. Replace the motor or encoder; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and routing, increasing the

cross-sectional area of grounding

wire and adding magnetic rings.

35426

Encoder Communication

Timeout

1. Abnormal encoder data; 2.

Encoder cable sequence error or poor

contact; 3. Abnormal encoder data

due to noise interference.

1. Replace the motor or encoder; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and routing, increasing the

cross-sectional area of grounding

wire and adding magnetic rings.

35427
Encoder Internal Malfunction 1 Abnormal encoder internal state Soft reset of the encoder after zeroing

or restart the drive

35428

Malfunction of Other Drive Axes 1. Malfunction of other axes; 2.

Abnormal internal circuit of the drive

1. Check other axes and reset those

reported fault to ensure that other

axes are free of fault, and such fault

can be prohibited from detection by

the parameter 0x2094; 2. Replace the

0 17Troubleshooting

xCoreControl System User Manual 405

drive

35429

Control Encoder Over-Speed 1. The encoder position feedback

value variates excessively in a

position sampling period, and

exceeds 1.3 times of the highest

speed of the motor; 2. Encoder

malfunction; 3. Abnormal encoder

data due to noise interference.

1. Optimize motor parameters and

control parameters. The maximum

motor set speed is usually not less

than the actual maximum motor

speed; 2. Check the encoder settings

and wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and routing, increasing the

cross-sectional area of grounding

wire and adding magnetic ring.

35430

Drive Continuous Overload 1. Excessive motor load or

acceleration/deceleration time set is

too short; 2. Actual mechanical load

is excessive or it's jammed; 3. The

motor's band-type brake is not

released; 4. An exception in the

motor or motor's band-type brake; 5.

Internal malfunction of the drive.

1. Reduce the actual mechanical load

or increase the motor acceleration and

deceleration time; 2. Check the

transmission mode of mechanical

load to ensure that there is no

jamming; 3. Check the band-type

brake wiring and ensure that it is

reliable; 4. Replace the motor; 5.

Replace the drive.

35431

Drive Output Phase Loss 1. The line break and poor wiring

occur in the U, V and W outputs of

the drive; 2. The motor impedance is

excessive; 3. The internal current

sampling circuit of the drive is

abnormal.

1. Check the wiring of motor U, V

and W and ensure that it is reliable; 2.

Replace the motor or turn off the

drive output phase loss detection

function; 3. Replace the drive.

35432

Motor Stall 1. Unreasonable setting of drive

regulator parameters leads to large

speed tracking overshoot; 2.

Abnormal encoder data due to

electromagnetic and noise

interference; 3. Abnormal encoder

data due to damaged encoder; 4.

Abnormal internal circuit of the

drive.

1. Optimize regulator parameters; 2.

Improve the electromagnetic

environment of equipment by

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire and adding magnetic

ring; 3. Replace the motor or encoder;

4. Replace the drive.

35433

Excessive Current Tracking Error 1. Unreasonable setting of drive

regulator parameters leads to large

speed tracking overshoot; 2.

Abnormal encoder data due to

electromagnetic and noise

interference; 3. Abnormal encoder

data due to damaged motor; 4.

Abnormal internal circuit of the

1. Optimize regulator parameters; 2.

Improve the electromagnetic

environment of equipment by

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire and adding magnetic

ring; 3. Replace the motor; 4. Replace

the drive.

0 17Troubleshooting

406 xCoreControl System User Manual

drive.

35434

Abnormal Target Position Value 1. In CSP mode, the difference

between the target position value and

the actual position value exceeds the

threshold set for the position tracking

error when the servo is enabled; 2. In

CSP mode, the target trajectory

acceleration exceeds the threshold

set for the maximum acceleration

when the motor is running, and the

difference between the target

position value and the actual position

value exceeds the threshold set for

the position tracking error.

1. Check and confirm that the target

position value and the actual position

value are normal, so that the

difference does not exceed the set

threshold for the position tracking

error; 2. Check and confirm that the

target position value is normal, or

appropriately increase the set

threshold for maximum acceleration

or the position tracking error.

35435

Encoder Power-On Data

Overflow

The feedback value of the position

during drive power-up is beyond the

range allowed by the encoder.

Soft reset the encoder after zeroing or

restart the drive.

35436

Target Position Value Overflow Target position value exceeds the

maximum permissible range when

unlimited position control is disabled

in the position mode.

Perform the encoder multiturn

zeroing operation, or enable the

unlimited position control mode, or

work in a non-position mode (torque

mode or speed mode).

35437

Abnormal Motor's Band-Type

Brake

1. There is an exception in the motor

band-type brake, and braking fails; 2.

The servo is suddenly turned off

when the motor is running at high

velocity and the braking time is too

long; 3. The set braking time for the

motor band-type brake is shorter than

the actual braking time; 4. The

detection sensitivity for rotor

positioning fault is too low.

1. Replace the motor; 2. Optimize the

process logic control to avoid sudden

servo OFF when running at high

speed; 3. The braking time set for the

motor band-type brake should be not

less than the actual braking time; 4.

Properly increase the detection

sensitivity for rotor positioning fault.

35438

Control Power Supply

Under-Voltage

1. The 24V control power supply is

abnormal; 2. The wiring of the 24V

control power supply is incorrect or

poorly connected; 3. The load of the

24V control power supply is

excessive; 4. The internal circuit of

the drive is abnormal.

1. Replace the 24V control power

supply; 2. Check the wiring of the

24V control power supply and ensure

that it is reliable; 3. Check the load of

the 24V control power supply and

ensure that the capacity of the 24V

control power supply can meet the

load consumption under all working

conditions; 4. Replace the drive.

35439
STO1 Triggered STO1 is triggered or is poorly wired. Check the STO wiring to ensure that

it is reliable and not triggered.

35440 STO2 Triggered STO2 is triggered or is poorly wired. Check the STO wiring to ensure that

0 17Troubleshooting

xCoreControl System User Manual 407

it is reliable and not triggered.

35441

Positive Hardware Limit Switch

Triggered

One-way motion to the mechanical

limit causes hardware limit

triggering.

The fault can be cleared directly

through motion in the opposite

direction until the mechanical limit is

restored. Be careful to plan the

position so that the hardware limit is

not exceeded.

35442

Negative Hardware Limit Switch

Triggered

One-way motion to the mechanical

limit causes hardware limit

triggering.

The fault can be cleared directly

through motion in the opposite

direction until the mechanical limit is

restored. Be careful to plan the

position so that the hardware limit is

not exceeded.

35443

The Motor Exceeds the Velocity

Limit

1. The actual motor speed feedback

value exceeds 1.1 times the

maximum motor speed; 2. The

encoder is abnormal.

1. Optimize motor parameters and

control parameters. The maximum

motor speed set is usually not less

than the actual maximum motor

speed; 2. Check the encoder settings

and wiring.

35444

Emergency Stop Input Switch

Triggered

Emergency stop input switch is

triggered or is poorly wired.

Check the emergency stop input

switch wiring to ensure that it is

reliable and not triggered.

35445

Torque Monitoring Windup Fault 1. The motor load is excessive and it

exceeds the torque monitoring alarm

threshold; 2. The torque saturation

monitoring threshold set is too low.

1. Reduce the actual mechanical load

of the motor or increase the motor

acceleration and deceleration time; 2.

Increase the torque saturation

monitoring threshold set. When the

threshold is set to 0, the fault will not

be detected.

35446

Excessive Velocity Tracking

Error

1. Excessive motor load; 2.

Inappropriate control parameters; 3.

Abnormal release action of the

band-type brake; 4. Too small

threshold or time duration for

judging excessive velocity tracking

error.

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2.

Optimize the control parameters and

enhance the corresponding

performance of the servo; 3. Check

the line of the band-type brake of the

motor to ensure normal action of the

band-type brake; 4. Appropriately

increase the threshold or time

duration for judging excessive

velocity tracking error.

35447

Short Circuit of the Drive 2 1. The U/V/W output cable of the

drive is short-circuited, or

short-circuited to ground; 2. The

1. If a short circuit occurs between

the cable's UVW phases, or between

the cable's U/V/W and grounding,

0 17Troubleshooting

408 xCoreControl System User Manual

U/V/W output cable of the motor is

short-circuited, or short-circuited to

ground; 3. An internal cable of the

drive is short-circuited, or

short-circuited to ground; 4. False

alarm is caused because the drive is

interfered

dispose or replace the cable; 2. If a

short circuit occurs between the

motor's UVW phases, or between the

motor's U/V/W cable and grounding,

replace the motor; 3. If faults still

occur after disconnecting the drive

U/V/W output wiring, replace the

drive; 4. Improve the electromagnetic

environment of the equipment by

standardizing wiring and cabling,

increasing the cross-sectional area of

the grounding wire and adding

magnetic rings.

35448

Origin Searching Failed 1. Unreasonable parameter setting of

origin searching; 2. The motor is

already in the limit switch trigger

state when the origin searching is

activated; 3. Switch to non-HM

mode during origin searching.

1. Set correct parameters of origin

searching; 2. The sure that the motor

is not in the limit switch trigger state

when the origin searching is

activated; 3. Do not switch to

non-HM mode during origin

searching.

35449
EtherCAT Process Data Error The PDO set value is beyond the

target's allowable range.

The PDO set value is within the

target's allowable range.

35450

Illegal EtherCAT Bus Instruction EtherCAT communication state

machine is incorrectly matched with

the control word time sequence.

The host computer correctly handles

the EtherCAT communication state

computer and control word time

sequence.

35451

EtherCAT Communication Cycle

Error

1. EtherCAT communication cycle is

shorter than the servo control cycle;

2. EtherCAT communication period

is not set to an integer power of 2 for

250 μs.

1. Adjust the EtherCAT

communication cycle or the servo

control cycle so that the

communication cycle is longer than

the servo control cycle; 2. Set the

EtherCAT communication cycle to an

integer power of 2 for 250 μs.

35452

Operation Error of Position

Planning

1. Target position value cache

overrun when running PP mode

under EtherCAT control; 2. Internal

malfunction of the drive.

1. Optimize the EtherCAT master

control process to reduce the number

of target position value caches,

typically no more than 4; 2. Replace

the drive.

35453

Illegal EtherCAT

Synchronization Mode

1. EtherCAT communication DC

mode is incorrectly configured; 2.

DC mode is not activated for

EtherCAT communication.

1. Configure EtherCAT

communication DC mode correctly;

2. Activate the DC mode for

EtherCAT communication.

35454
Target Position Value Beyond the

Set Range

The target position value exceeds the

set range when the unlimited position

Set the target position value to a

value between the lower limit and the

0 17Troubleshooting

xCoreControl System User Manual 409

control mode is enabled or disabled. upper limit of the position range or

use the normal unlimited position

mode.

35455

Motor U – phase Instantaneous

Overload

1. Excessive motor load; 2.

Over-short acceleration and

deceleration time durations of the

motor; 3. Incorrect setting of motor

parameters; 4. Abnormal release

action of the band-type brake; 5.

Wrong motor model with a smaller

power (such as the high-power drive

loaded with the small-power motor

runs at full load and high speed for a

long time); 6. Abnormal internal

current sampling circuit of the drive;

7. The fast motor overload protection

threshold and protection time

duration set are too small.

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2. Prolong

the acceleration and deceleration time

durations during motor operation; 3.

Check the motor parameters to ensure

that the motor parameters are set

correctly (such as the rated current

and thermal time constant of the

motor); 4. Check the line of the

band-type brake of the motor to

ensure normal action of the band-type

brake; 5. Change to a high–capacity

motor; 6. Replace the drive; 7.

Increase the fast motor overload

protection threshold and protection

time duration appropriately.

35456

Motor V – phase Instantaneous

Overload

1. Excessive motor load; 2.

Over-short acceleration and

deceleration time durations of the

motor; 3. Incorrect setting of motor

parameters; 4. Abnormal release

action of the band-type brake; 5.

Wrong motor model with a smaller

power (such as the high-power drive

loaded with the small-power motor

runs at full load and high speed for a

long time); 6. Abnormal internal

current sampling circuit of the drive;

7. The fast motor overload protection

threshold and protection time

duration set are too small.

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2. Prolong

the acceleration and deceleration time

durations during motor operation; 3.

Check the motor parameters to ensure

that the motor parameters are set

correctly (such as the rated current

and thermal time constant of the

motor); 4. Check the line of the

band-type brake of the motor to

ensure normal action of the band-type

brake; 5. Change to a high–capacity

motor; 6. Replace the drive; 7.

Increase the fast motor overload

protection threshold and protection

time duration appropriately.

35457

Motor W– phase Instantaneous

Overload

1. Excessive motor load; 2.

Over-short acceleration and

deceleration time durations of the

motor; 3. Incorrect setting of motor

parameters; 4. Abnormal release

action of the band-type brake; 5.

Wrong motor model with a smaller

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2. Prolong

the acceleration and deceleration time

durations during motor operation; 3.

Check the motor parameters to ensure

that the motor parameters are set

0 17Troubleshooting

410 xCoreControl System User Manual

power (such as the high-power drive

loaded with the small-power motor

runs at full load and high speed for a

long time); 6. Abnormal internal

current sampling circuit of the drive;

7. The fast motor overload protection

threshold and protection time

duration set are too small.

correctly (such as the rated current

and thermal time constant of the

motor); 4. Check the line of the

band-type brake of the motor to

ensure normal action of the band-type

brake; 5. Change to a high–capacity

motor; 6. Replace the drive; 7.

Increase the fast motor overload

protection threshold and protection

time duration appropriately.

35458

Dynamic Braking Overload The interval between two adjacent

dynamic braking stops is too short

when the motor is running.

If there is a dynamic braking stop

when the motor is running, the

interval must be at least 360*actual

speed²/rated speed² (s).

35459 Internal Malfunction of the Drive Internal malfunction of the drive. Replace the drive.

35460
Abnormal Limit Switch The limit switch is triggered or is

poorly wired.

Check limit switch wiring to ensure

that it is reliable and not triggered.

35461

Abnormal Communication of the

EtherCAT Bus

1. The EtherCAT communication is

interfered; 2. Disconnection or poor

contact of EtherCAT network cables;

3. Insufficient real-time performance

of the host computer; 4. Mismatch

between the underlying DC

synchronization mechanism of the

EtherCAT master of the host

computer and the drive requirements;

5. Internal malfunction of the drive.

1. Improve the electromagnetic

environment of equipment by

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire and adding magnetic

ring; 2. Check the connection of

EtherCAT network cables to ensure

reliable connection; 3. Change to the

host computer with stronger real-time

performance, or extend the EtherCAT

communication cycle, or increase the

timeout detection sensitivity; 4.

Modify the underlying DC

synchronization mechanism of the

EtherCAT master of the host

computer to ensure that the SM2

event of the host computer is at least

125 μ s ahead of the DC

synchronization signal; 5. Replace the

drive.

35462
Interface Encoder Resolution

Change

Interface encoder resolution is

changed.

Re-power on or perform the soft reset

of the drive.

35463

Encoder Overheating 1. The actual encoder temperature is

too high; 2. The encoder is abnormal.

1. Bring down the encoder operating

temperature to within the allowable

range; 2. Replace the motor or

encoder.

35464 Encoder Battery Under-Voltage 1. Encoder battery voltage too low; 1. Replace the encoder battery; 2.

0 17Troubleshooting

xCoreControl System User Manual 411

Fault 2. The encoder battery is poorly

wired.

Check and handle the battery wiring

to ensure that the battery wiring is

correct and secure.

35465

Control Mode Setting Error When the servo is ON, the control

mode set is not supported by the

drive, such as NM, VL or IP, or the

control mode is set to PV or PT

under EtherCAT control.

When the servo is ON, set the control

mode supported by the drive.

35466

Excessive Power-On Position

Deviation

When the drive is powered on, the

position is different from the last

position saved during power-off and

it exceeds the set threshold.

Check whether the mechanical

position has been changed. Clear the

alert after confirming that the

mechanical zero point is normal.

35467

Abnormal Encoder Acceleration 1. Abnormal encoder data; 2.

Encoder cable sequence error or poor

contact; 3. Abnormal encoder data

due to noise interference.

1. Replace the motor or encoder; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and routing, increasing the

cross-sectional area of grounding

wire and adding magnetic rings.

35468

Motor Rotor Locked 1. The mechanical load leads to

jamming or locking; 2. The motor's

band-type brake is not released.

1. Check and handle the mechanical

load transmission to ensure that there

is no jamming or locking; 2. Check

and handle the band-type brake

circuit to ensure the band-type brake

can be released properly.

35469 EEPROM Data Write Error Internal malfunction of the drive. Replace the drive.

35470 Axis EEPROM Data Read Error Internal malfunction of the drive. Replace the drive.

35471

Band-type Brake Control Circuit

Error

1. The motor band-type brake is

short circuited or poorly wired; 2.

There is a short circuit or poor wiring

inside the band-type brake; 3.

Internal malfunction of the drive.

1. Check the wiring of the drive's

band-type brake output and ensure it

is correct and reliable; 2. Replace the

motor; 3. Replace the drive.

35472

CPU1 Overload 1. The drive operation is subject to

noise interference; 2. Excessive data

collected by the commissioning

software; 3. The internal circuit of

the drive is abnormal.

1. Improve the electromagnetic

environment of equipment by

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire and adding magnetic

ring; 2. Close some of the data

collection channels of the

commissioning software; 3. Replace

the drive.

35473
CPU2 Overload 1. The drive operation is subject to

noise interference; 2. Excessive data

1. Improve the electromagnetic

environment of equipment by

0 17Troubleshooting

412 xCoreControl System User Manual

collected by the commissioning

software; 3. The internal circuit of

the drive is abnormal.

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire and adding magnetic

ring; 2. Close some of the data

collection channels of the

commissioning software; 3. Replace

the drive.

35474

CPU1 Handshake Failed 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35475

DriveMaster Communication

Timeout

1. The drive's commissioning cable

is disconnected or poorly wired; 2.

The drive's commissioning serial

communication is interfered.

1. Check the wiring of the drive

commissioning cable and ensure a

reliable connection 2. Improve the

electromagnetic environment of the

equipment by using isolated serial

port commissioning cable,

standardizing wiring and cabling,

increasing the cross-sectional area of

the grounding wire, and adding

magnetic rings.

35476
ESC Configuration EEPROM

Error

Internal malfunction of the drive. Replace the drive.

35477 ESC Internal Access Error Internal malfunction of the drive. Replace the drive.

35478

Servo Enabling not Ready 1. When the servo is ON, the drive is

in actual motor and virtual encoder

mode; 2. When the servo is ON, the

encoder communication is

disconnected; 3. When the servo is

ON, the motor speed is higher than

30rpm; 4. When the servo is ON, the

STO status is not lifted; 5. When the

servo is ON, the DC bus voltage is

too low and the charging relay is not

closed; 6. When the servo is ON, the

dynamic braking status is not lifted;

7. Internal error of drive.

1. Check the drive motor mode to

ensure that the drive is in actual

motor and actual encoder mode when

the servo is ON; 2. Check the encoder

communication status to ensure that

the encoder communication is normal

when the servo is ON; 3. Check the

motor operation status to ensure that

the motor is still when the servo is

ON; 4. Check the STO status to

ensure that the STO status ends when

the servo is ON; 5. Check the DC bus

voltage status to ensure that the DC

bus voltage meets the enable

threshold when the servo is ON and

the charging relay is closed; 6. Check

the dynamic braking status to ensure

that the dynamic braking status ends

when the servo is ON; 7. Replace the

drive.

35479 CPU2 Handshake Failed 1. Operational malfunction of the 1. Upgrade the drive firmware; 2.

0 17Troubleshooting

xCoreControl System User Manual 413

drive firmware; 2. Internal

malfunction of the drive.

Replace the drive.

35480

CPU1 Main Task Timeout 1. The drive operation is subject to

noise interference; 2. Excessive data

collected by the commissioning

software; 3. The internal circuit of

the drive is abnormal.

1. Improve the electromagnetic

environment of equipment by

standardizing wiring and routing,

increasing the cross-sectional area of

grounding wire, and adding magnetic

ring; 2. Close some of the data

collection channels of the

commissioning software.

35481
DC Bus Charging Relay Error Charging relay inside drive

malfunctions.

Replace the drive.

35482

CPU Internal Error 1. Operational malfunction of the

drive firmware; 2. Internal

malfunction of the drive.

1. Upgrade the drive firmware; 2.

Replace the drive.

35483

Actual Position Value Overflow Actual position value exceeds the

maximum permissible range when

unlimited position control is disabled

in the position mode.

Perform the encoder multiturn

zeroing operation, or enable the

unlimited position control mode, or

work in a non-position mode (torque

mode or speed mode).

35484
Encoder Internal Error 2 Encoder internal status error. Soft reset the encoder after zeroing or

restart the drive.

35485
Encoder Internal Error 3 Encoder internal status error. Soft reset the encoder after zeroing or

restart the drive.

35486

Excessive Position 2 Following

Error

1. Excessive motor load; 2.

Inappropriate control parameters; 3.

Abnormal release action of the

band-type brake; 4. Too small

threshold or time duration for

judging excessive position 2

following error.

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2.

Optimize the control parameters and

enhance the corresponding

performance of the servo; 3. Check

the line of the band-type brake of the

motor to ensure normal action of the

band-type brake; 4. Appropriately

increase the threshold or time

duration for judging excessive

position 2 following error.

35487
STO Wiring Error STO1/STO2 triggered or poorly

wired.

Check the STO wiring to ensure that

it is reliable and not triggered.

35488

Excessive Velocity 2 Following

Error

1. Excessive motor load; 2.

Inappropriate control parameters; 3.

Abnormal release action of the

band-type brake; 4. Too small

threshold or time duration for

judging excessive velocity 2

1. Reduce the actual mechanical load

of the motor to ensure that the

machinery is not jammed; 2.

Optimize the control parameters and

enhance the corresponding

performance of the servo; 3. Check

0 17Troubleshooting

414 xCoreControl System User Manual

following error. the line of the band-type brake of the

motor to ensure normal action of the

band-type brake; 4. Appropriately

increase the threshold or time

duration for judging excessive

velocity 2 following error.

35489

Abnormal Main Power Input 1. The power input power supply of

the driver is poorly wired; 2. The

driver power circuit is set as

three-phase input, but the actual

power supply input is single-phase;

3. Electronic transformer is used in

the front end, and the harmonic of

electronic transformer is abnormal.

1. Check the power input power

wiring of the driver and ensure that

the wiring is reliable; 2. Correctly set

the driver power circuit, and the set

value is consistent with the actual

power supply input; 3. Wire

according to the transformer manual,

and install a filter at the front end of

the servo driver if necessary.

35490

Motor Band Brake Disconnection 1. The motor holding brake is not

connected or has poor contact; 2.

Motor holding brake is abnormal; 3.

Drive internal exception.

1. Check and handle the motor band

brake wiring to ensure that the wiring

is correct and firm; 2. Replace the

motor; 3. Replace the drive.

35491

Coprocessor Communication

Exception

1. Encoder cable sequence error or

poor contact; 2. Encoder data is

abnormal due to noise interference.

1. Correct the wiring sequence or

reinforce the wiring; 2. Improve the

electromagnetic environment of

equipment by standardizing wiring

and wiring, increasing the sectional

area of grounding wire, and adding

magnetic ring.

35492

Abnormal Change of Encoder

AB Signal

1. Encoder cable sequence error or

poor contact; 2. Encoder data is

abnormal due to noise interference.

1. Correct the wiring sequence or

reinforce the wiring; 2. Improve the

electromagnetic environment of

equipment by standardizing wiring

and wiring, increasing the sectional

area of grounding wire, and adding

magnetic ring.

35493

Rectifier Module Overheating 1. Abnormal temperature sampling

circuit inside the driver; 2. Driver

operating environment temperature is

outside the allowable operating

range.

1. Replace the drive; 2. Decrease the

ambient temperature, for example,

improve the radiation conditions of

cabinets.

35494

Radiator overheating 1. Abnormal temperature sampling

circuit inside the driver; 2. Driver

operating environment temperature is

outside the allowable operating

range.

1. Replace the drive; 2. Decrease the

ambient temperature, for example,

improve the radiation conditions of

cabinets.

35495 Motor Overheating 1. The motor load is too large; 2. The 1. Reduce the actual mechanical load

0 17Troubleshooting

xCoreControl System User Manual 415

operating environment temperature

of the motor is too high to be

allowed. 3. Error in setting

thermocouple resistance value for

motor overheat protection; 4.

abnormal temperature sensor of the

motor; 5. Drive internal exception.

of the motor to ensure that the

machine is free from jamming; 2.

Enhance the heat dissipation of the

motor to ensure that the operating

environment temperature is within

the allowable range; 3. Correctly set

the setting value of thermocouple

resistance for motor overheat

protection; 4. Replace the motor; 5.

Replace the drive.

35496

Incremental Encoder Z Signal

Exception

1. The encoder's own data is

abnormal; 2. Wrong encoder cable

sequence or poor contact; 3.

Abnormal encoder data due to noise

interference.

1. Replace the motor or encoder; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of the

equipment by standardizing wiring

and wiring, increasing cross-section

area of grounding wire, and adding

magnetic rings..

35497

Abnormal Energy Consumption

Brake Circuit

Energy consumption brake selection

for setting the server parameters is

inconsistent with the actual

connection of the energy

consumption brake resistance.

Correctly set the selected servo

parameters for energy consumption

braking to match the actual wiring of

the energy consumption braking

resistance.

35498

CPU Overheat 1. Abnormal temperature sampling

circuit inside the driver; 2. Driver

operating environment temperature is

outside the allowable operating

range.

1. Replace the drive; 2. Decrease the

ambient temperature, for example,

improve the radiation conditions of

cabinets.

35499

Power Failure of Main Power

Supply

1. When the driver servo is ON, the

power supply fails; 2. Abnormal

power failure detection of main

power supply due to noise

interference; 3. The servo parameter

main power failure detection time is

set too small.

1. Check the power supply and wiring

of the driver to ensure that the power

supply is normal and the connection

is reliable; 2. Improve the

electromagnetic environment of

equipment by standardizing wiring

and wiring, increasing the sectional

area of grounding wire, and adding

magnetic ring; 3. Properly increase

the setting value of servo parameter

main power failure detection time.

35500

Abnormal Diagnosis of STO1

Circuit

1. STO1 triggering or poor wiring; 2.

Driver internal exception.

1. Check the STO wiring to ensure

that it is reliable and not in the

triggered state; 2. Replace the drive.

35501
Abnormal Diagnosis of STO2

Circuit

1. STO2 triggering or poor wiring; 2.

Driver internal exception.

1. Check the STO wiring to ensure

that it is reliable and not in the

0 17Troubleshooting

416 xCoreControl System User Manual

triggered state; 2. Replace the drive.

35502

Hall Signal is Abnormal 1. Hall sensor signal is abnormal; 2.

Hall sensor wiring sequence error or

poor contact; 3. Hall signal is

abnormal due to noise interference.

1. Replace the motor or Hall sensor,

or prohibit Hall signal detection; 2.

Correct the wiring sequence or

reinforce the wiring; 3. Improve the

electromagnetic environment of

equipment by standardizing wiring

and wiring, increasing the sectional

area of grounding wire, and adding

magnetic ring..

35503

Abnormity of Encoder AB Signal

Under Phase

1. Hall sensor or AB encoder signal

is abnormal; 2. Hall sensor or AB

encoder wiring sequence error or

poor contact; 3. Hall or AB encoder

signal is abnormal due to noise

interference.

1. Replace the motor or hall sensor

and encoder; 2. Correct the wiring

sequence or reinforce the wiring; 3.

Improve the electromagnetic

environment of equipment by

standardizing wiring and wiring,

increasing the sectional area of

grounding wire, and adding magnetic

ring.

35504 Drive Internal Exception 2 Drive internal exception. Replace driver.

35505
The robot cfg is incorrect and the

robot is not allowed to use it.

The robot cfg is incorrect. Use the correct robot cfg.

35506
The soft limit exceeds the hard

limit.

The soft limit exceeds the hard limit. The soft limit exceeds the hard limit.

35507

The configuration file has

STOP_STO_TIME field and

stop1 time greater than 760ms,

but the firmware version of the

security board is too lower

The configuration file has

STOP_STO_TIME field and stop1

time greater than 760ms, but the

firmware version of the security

board is too lower

Upgrade the firmware of the security

board

35508
Failed to set the value of

STOP_TIME to Saftey board

Hardware failure Check hardware

35509

Failed to set the value of

STOP_TIME！

The value of STOP_TIME is too

large

The value of STOP0_TIME should

be < manu STO_TIME-30,The value

of STOP1_TIME should be < auto

STO_TIME-60.

35600

STO Switch Activation Failure Robot enabling handle not effective Press manual enable handle;

Reconnect STO cables; Replace STO

lines; Replace servo drive

35601
Brake Voltage Anomaly Hardware brake voltage output

exceeds standard

Verify firmware & parameter

versions; Replace drive board

35602
Drive Unit Overheat Joint temperature exceeds

operational limits

Perform cooldown process; Update

firmware; Replace servo drive

35603
Primary Encoder Error Motor-side encoder malfunction Firmware validation; Recalibration;

Replace joint assembly

0 17Troubleshooting

xCoreControl System User Manual 417

35604
Secondary Encoder Error Joint-side encoder anomaly Firmware verification; Recalibration;

Replace joint

35605
Encoder Disturbance Line noise/drive board failure or

EMI interference

Inspect connections; Replace drive

board; Verify firmware

35606

Current Overload - Phase A Phase A current exceeding threshold Check: Cable connections/Motor

alignment/Brake status/Load

parameters

35607

Current Overload - Phase B Phase B current exceeding threshold Check: Cable terminations/Position

calibration/Brake function/Load

profile

35608

Current Overload - Phase C Phase C current surpassing limit Verify: Wiring integrity/Motor

offset/Brake operation/Load

conditions

35609

IGBT Protection Triggered Current exceeding preset threshold Inspect: Load

conditions/Deceleration

parameters/Mechanical resistance

35610

Motor Overload Protection Excessive torque or motor stall Check: Wiring/Acceleration

settings/Winding resistance/Brake

condition

35611
Current Sensing Anomaly Current detection anomaly in

disabled state

Update firmware/parameters; Replace

drive unit

35612
Low DC Voltage Condition Insufficient bus voltage supply Verify power input; Replace

drive/power boards

35613
High DC Voltage Condition Voltage surge/Regenerative

deceleration anomaly

Inspect power supply; Adjust

deceleration profile

35614
Position Tracking Fault Tracking error exceeding threshold Verify connections/Hardware

integrity/Command rationality

35615
Communication Link Failure EtherCAT communication failure Check cabling; Validate firmware

compatibility

35616
Angle Alignment Fault Wiring/parameter configuration error Inspect: Cable routing/Firmware

version/Calibration parameters

35617
Encoder Count Overflow Firmware mismatch/EEPROM

corruption

Upgrade firmware; Replace drive

controller

35618
Encoder Count Overflow Firmware mismatch/EEPROM

corruption

Upgrade firmware; Replace drive

controller

35619

RSC firmware version is

incompatible with the controller

version

RSC firmware version is

incompatible with the controller

version

Check the RSC firmware version and

upgrade it to the latest compatible

version

35620

Motor short-circuit (overcurrent)

protection

1.Excessive current triggers the

current protection mechanism

1.Check for any severe impacts;

2.Inspect for potential phase-to-phase

short circuits in the motor

35621

Power Board Bus Under-voltage 1. Power cable disconnected or

insufficient supply voltage; 2. Power

board hardware failure;

1. Check power connection; 2.

Inspect servo driver hardware;

0 17Troubleshooting

418 xCoreControl System User Manual

35622

Power Board Bus Over-voltage 1. Incorrect power cable polarity

causing overvoltage; 2. Power board

hardware failure;

1. Verify power input configuration;

2. Inspect power board components;

35623
Main Relay Feedback Abnormal 1. Power board hardware

malfunction;

1. Check power board circuitry;

35624

Excessive Leakage Current 1. Short circuit in body wiring

harness or power cables; 2. Power

board hardware failure;

1. Inspect cable insulation integrity;

2. Test power board functionality;

35625

Brake System Overload 1. Brake circuit open; 2. Brake

mechanical failure; 3. Power board

or servo driver module defect;

1. Check wiring continuity; 2. Test

brake mechanism; 3. Diagnose driver

module;

35626

User Power Overcurrent 1. External device wiring error or

short circuit; 2. Exceeding rated

power capacity;

1. Verify peripheral connections; 2.

Confirm device specifications;

35627 EEPROMWrite Failure 1. EEPROM component failure; 1. Replace power board;

35628 EEPROM Read Failure 1. EEPROM component failure; 1. Replace power board;

35629
Power Relay Malfunction 1. Power board hardware

malfunction;

1. Inspect relay contacts;

35630
CR35 Heat Exchanger Error 1. Heat exchanger wiring short; 2.

Power board failure;

1. Check thermal management system

wiring; 2. Test power board;

35631
48V Power Undervoltage 1. Joint resistance abnormally high;

2. Power supply misconfiguration;

1. Check joint mechanical operation;

2. Verify power input;

35632
48V Power Overcurrent 1. Excessive mechanical load or

acceleration;

1. Optimize motion parameters;

35633 CR35 Bleeder Circuit Error 1. Power board component failure; 1. Replace power board;

35634 CR35 Bleeder Overcurrent 1. Bleeder resistor failure; 1. Replace bleeder module;

35635 CR35 Bleeder MOS Short 1. Power board hardware failure; 1. Replace power board;

35636 Bleeder I²T Protection Triggered 1. Power board thermal overload; 1. Check cooling system;

35637 Board Communication Error 1. Power board hardware defect; 1. Replace communication module;

35638 FPGA Watchdog Reset 1. Servo driver control board failure; 1. Replace control board;

35639 FPGA Leakage Alert 1. Ground fault in cabinet wiring; 1. Perform insulation resistance test;

35640 Encoder Interpolation Fault 1. Verify encoder hardware integrity;

35641
Encoder Multi-turn Count Error 1. Encoder battery disconnection; 2.

Low battery voltage;

1. Check battery connectors; 2.

Measure battery voltage;

35642
Abnormal Encoder Data 1. Verify encoder cable routing; 2.

Check encoder magnetic gap;

35643 Encoder Comms Lost 1. Encoder cable disconnection; 1. Re-seat encoder connectors;

35644
Encoder Overspeed Error 1. Loose encoder connections; 2.

Magnetic gap deviation;

1. Secure cable terminations; 2.

Adjust encoder alignment;

35645 Sensor CRC Failure 1. Sensor data frame CRC mismatch; 1. Inspect sensor wiring;

35646 Null Sensor Data 1. All-zero data packets received; 1. Check sensor power supply;

35647
Velocity Tracking Error 1. Significant deviation between

calculated and actual joint speed;

1. Verify sensor installation; 2.

Calibrate speed parameters;

0 17Troubleshooting

xCoreControl System User Manual 419

35648 Zero-point Calibration Fault 1. Zero calibration data mismatch; 1. Recalibrate sensor;

17.1.34XXXX
Code Description Possible Reasons Solution

41410

ForceObs limit exceeded The observed force（Fx、Fy、Fz） in the

Cartesian space exceeds the limit

Check the configuration and torque

sensor status, modify the program to

decrease the total external force

acting on the robot

41411

TorqueObs limit exceeded The observed torque （Mx、My、Mz）

in the Cartesian space exceeds the limit

Check the configuration and torque

sensor status, modify the program to

decrease the total external force

acting on the robot

41412
Position limit exceeded The position in the JOINT space exceeds

the limit

Change current position a few

increments to allowed area

41413
Position limit exceeded The position in the Cartesian space

exceeds the limit

Change current position a few

increments to allowed area

41414

Velocity limit exceeded You cannot proceed without removing

the causes of this error

Reduce speed, use fine point,

increase AccSet, avoid singularity,

inc. dynamic resolution

41415

Velocity limit exceeded You cannot proceed without removing

the causes of this error

Reduce speed, use fine point,

increase AccSet, avoid singularity,

inc. dynamic resolution

41416

Singularity Problem The destination or current position is too

close to singularity

Change destination position a few

increments. During jogging, use

axis by axis. During program

execution, use MoveAbsJ

41417
Execution Error No operation will be possible until after

correcting the fault.

Verify that the joint position is

within allowed region

41418

FC supervision error The default force supervision has

triggered because the programmed or

measured external forces are larger than

the safety limit for the robot type

Check the configuration and modify

the program to decrease the total

external force acting on the robot

41419

FcInit Error The TCP length exceeds limitation, or

the current reference coordinate system is

NOT valid

Review the limits for the tool and

detailed definitions in the Product

manual

41420

Force control activation failed See the "content" 1. Verify current tool (Tool) settings

match actual configuration and

ensure proper tool mass/center of

gravity settings; 2. Check

monitoring window to confirm

robot coordinate system and pose

match actual status; 3. Confirm

current robot model and RD

parameters match actual

0 17Troubleshooting

420 xCoreControl System User Manual

configuration; 4. Try returning to

mechanical zero position and

perform sensor reset before

dragging; 5. Ensure no external

force is applied when enabling drag;

6. For more detail, refer to the Drag

Fault Troubleshooting Manual.

41421
Failed to pause the force

control

The robot force control is NOT executed Command execute only after

starting FC

41422
Failed to restart FC The robot force control is not paused Pause or Stop the FC before

restarting the force control tasks

41423
Failed to set SensorUseMod The force control is uninitialized Check the configuration and

initialize the FC

41424

Calibration Failed The dynamic compensation is executed,

and a manual calibration is NOT allowed

To use the manual calibration,

please change the sensor usage

mode to calibration

41425

Failed to set the sine overlay The overlay is paused in the

non-impedance control mode, or the

command is NOT allowed when the

program is executing

Ensure that it is in the impedance

control mode and that the overlay is

stopped

41426

Failed to set the Lissajous

overlay

The overlay is paused in the

non-impedance control mode, or the

command is NOT allowed when the

program is executing

Ensure that it is in the impedance

control mode and that the overlay is

stopped

41427

Failed to start the overlay The overlay is not set, or it is not in the

Cartesian impedance control mode

Check control mode command and

set the overlay parameters before

restarting.

41428

Failed to pause the overlay The overlay is not started, or it is not in

the Cartesian impedance control mode

Please ensure that the overlay is

started and it is in the Cartesian

impedance control mode

41429

Failed to restart the overlay The overlay is not paused, or it is not in

the Cartesian impedance control mode

Pause the current FC mission and

check control mode command.

Switch to cartesian impedance

control before restarting.

41430
Failed to set ControlType The impedance control mode is

uninitialized

Stop the current FC mission and

initialize control parameter again

41431

Initialization error of

JntImpedanceFC

Not in the joint impedance control mode;

the initialization command is not

executed

Execute the Joint impedance control

mode before restarting FC

41432

Initialization error of

CartImpedanceFC

Not in the Cartesian impedance control

mode; the initialization command is not

executed

Execute the Cartesian impedance

control mode before restarting FC

41433
Failed to set NullSpaceFC It is not in the Cartesian impedance

control mode, or the impedance is

Check the control mode and try

again. Do not restart system until a

0 17Troubleshooting

xCoreControl System User Manual 421

uninitialized valid force calibration or cartesian

impedance mode is made.

41434

Failed to set JntForceDes It is not in the joint impedance control

mode, or the impedance is uninitialized

Check the control mode and try

again. Do not restart system until a

valid force calibration or joint

impedance mode is made.

41435

Failed to set CartForceDes It is not in the Cartesian impedance

control mode, or the impedance is

uninitialized

Check the control mode and try

again. Do not restart system until a

valid force calibration or cartesian

impedance mode is made.

41436
Switch Command not allowed Cannot switch impedance mode when in

FC Execution state

Stop the current FC mission and

initialize control parameter

41437

Failed to activate the virtual

wall function

The robot flange is beyond the virtual

wall, which does not meet the virtual

wall constraints

Please move the robot flange into

the virtual wall range and then

activate the virtual wall

41438
Failed to activate the virtual

wall function

The virtual wall can be activated only in

the drag mode

Reactivate the virtual wall after the

drag mode is enabled

41439
Failed to activate the virtual

wall function

The current state of the robot does not

support the virtual wall function

41440
Deactivate the collision

detection

The collision detection is not required in

the impedance mode

None

41441

Reactivate the collision

detection

The collision detection is deactivated

automatically when impedance mode is

enabled. Now, the collision detection is

automatically activated when the

impedance mode is disabled

None

41442

Failed to activate impedance

control

When the impedance mode is enabled,

the robot does not meet the joint position

limitation requirement; the impedance

mode cannot be enabled

Please ensure that the robot is

within the joint position limitation

when the impedance mode is

enabled for the robot

41443

Parameter Error in

FCStiffSetting

The impedance stiffness set exceeds the

theoretical maximum value and has been

replaced by the default maximum value

Please reset the impedance stiffness

value within a reasonable range

41444

Parameter Error in

FCStiffSetting

The impedance stiffness value set is

abnormal and does not possess physical

significance

Please reset the impedance stiffness

value within a reasonable range

41445
Identification Calculation

Finished

Identification Calculation Finished,

results satisfy the standards.

Please reboot after the second

identification process

41446

Identification Exception Exception occurs during Identification,

some results will be replaced by default

standards

Results will be replaced by default

standards, please follow up

hardware qualification

41447

Failed to drag There is a large deviation between the

feedback and the model torque, and the

drag can not be activated

1. Check whether the current Tool

setting is consistent with the actual

situation and whether the set tool

0 17Troubleshooting

422 xCoreControl System User Manual

mass center is reasonable; 2. Check

the monitoring window to see

whether the robot coordinate system

and pose consistent with the actual

situation; 3. Confirm that the current

robot model and RD parameters are

consistent with the actual

parameters; 4. Try to return to the

mechanical zero and zero the

sensors before dragging; 5. For

more detail, refer to the Drag Fault

Troubleshooting Manual

41448
Failed to initialize the force

control

Fcinit is not allowed to be powered off

during force control

Click pptomain and run again

41449

Failed to initialize the force

control

Fc Commands from last time are not

finished, new command will be refused.

Calling Fc Commands too quickly,

please increase the time interval

between FcStop and FcInit for next

time.

41450

Failed to drag The voltage of the sensor is

abnormal,and the drag can not be

activated.

Please check the status of sensors.

41451
Force control protection

triggered, controller power off

See the "content" None

41452 Collision detection turned off

41453 Collision detection reopened

41454
ForceControl Stopped When

PowerOff

41455 Dont Check Path Deviation

41456
Resume in Postion Control

Mode

41457 Please Restart Force Control

41458
The time setting cannot be

negative or greater than 600

Please check the time format

41459
In force control mode,

unsupported instruction

41460
The virtual wall area setting is

too small

41462
Calibrate Sensor failed，please

check the load setting

The bias between dynamics model trq

and sensor measured is too large

Please check the load setting

41461

TCP length is too

large(norm<=0.15m),the ref

point of force control will be

setted at flange

41463 Drag enable prohibited in

0 17Troubleshooting

xCoreControl System User Manual 423

workpiece handling mode

41464

Failed to drag The range of the joint position limitation

is to small to open drag mode

Check the joint position limitation,

make sure the the range of the soft

limit is beyond 25°

41465

Calibration failed due to

excessive deviation between

sensor torque and theoretical

torque

Check load configuration

41470

Force control protection

parameters are set to default

values

41471

Force control protection

parameters set to user-defined

values

41472
SetFcJointVelMax execution

failed

Invalid command parameters Check and correct

SetFcJointVelMax parameters

41473
SetFcCartVelMax execution

failed

Invalid command parameters Check and correct

SetFcCartVelMax parameters

41474

SetFcJointMomentumMax

execution failed

Invalid command parameters Check and correct

SetFcJointMomentumMax

parameters

41475
SetFcJointEnergyMax

execution failed

Invalid command parameters Check and correct

SetFcJointEnergyMax parameters

41476

Program execution rejected due

to force control protection

trigger

Force control protection activated Restart program execution from

pptomain

41477

In the command parameters,

the lower limit exceeds the

upper limit.

The command parameters are invalid. Please check the command

parameter settings and correct the

parameters.

41478

Sensor identification failed! Before starting the identification, the

robot is not at the mechanical zero point

Please manually jog to the

mechanical zero point and then start

the identification

42001

Admittance motion exceeds

safe range

Exceeds safe range 1. Please check the safety range

parameters. 2. Please check if the

admittance control parameters are

reasonable.

17.1.45XXXX
Code Description Possible Reasons Solution

50000

Blending canceling The threshold for canceling the

blending is exceeded

1. Increase the angle between the two

trajectories; 2. Increase the length of the two

trajectories; 3. Increase the zone

50001
The controller status is

abnormal

The controller status is abnormal Run PPtoMain to reset projects or reload

programs

0 17Troubleshooting

424 xCoreControl System User Manual

50002

Exceeds range of motion 1. The target point exceeds the

range of motion of the robot. 2.

The target point is the singular

position in the Cartesian

coordinate system

1. Check the target point position. 2. Move

the robot by using its joints. 3. Check

CONFDATA configuration

50003
Two adjacent target points

are too close

Two adjacent target points are too

close

Check whether two adjacent Move

commands use the same target point

50004

The start point of arc is too

close to the end point. Failed

to generate arc. Trajectories

will be ignored

The start point of arc is too close

to the end point. Failed to generate

arc. Trajectories will be ignored

1. Adjust the distance between the point

positions of the start point and the end point

of the arc

50005

The start point of arc is too

close to the auxiliary point.

Failed to generate arc

The start point of arc is too close

to the auxiliary point. Failed to

generate arc

1. Adjust the distance between the point

positions of the start point and the auxiliary

point of the arc

50006

The end point of arc is too

close to the auxiliary point.

Failed to generate arc

The end point of arc is too close to

the auxiliary point. Failed to

generate arc

1. Adjust the distance between the point

positions of the end point and the auxiliary

point of the arc

50007

The end point of arc is too

close to the auxiliary point.

Failed to generate arc

If the distance between any two of

the start point, the auxiliary point,

and the end point is too short, the

angle between them will be very

small

1. Adjust the distance between the point

positions of the start point, the end point, and

the auxiliary point of the arc

50008

The start point, the auxiliary

point, and the end point are

on the same straight line.

Failed to generate arc

The start point, the auxiliary point,

and the end point are on the same

straight line. Failed to generate arc

1. Adjust the distance between the point

positions of the start point, the end point, and

the auxiliary point of the arc

50009

The radius of the arc is too

small. Failed to generate arc

The distance between the start

point, the end point, and the

auxiliary point of the arc are too

short

1. Adjust the distance between the point

positions of the start point, the end point, and

the auxiliary point of the arc

50010

Conditions for generating an

arc are not met. Failed to

generate arc

The distance between the start

point, the end point, and the

auxiliary point of the arc are too

short, or the start point, the

auxiliary point, and the end point

of the arc are on the same line

1. Adjust the distance between or the

orientation of the point positions of the start

point, the end point, and the auxiliary point of

the arc

50011

The start point of the

trochoid is too close to the

end point. Failed to generate

trochoid

The start point of the trochoid is

too close to the end point. Failed

to generate trochoid

1. Adjust the distance between the point

positions of the start point and the end point

of the trochoid. 2. Conditions for generating a

trochoid are as follows: the specified radius is

more than 1 mm; the specified feed is more

than 1 mm; the trochoid length is more than

the sum of two radii and one and a half feeds.

Note that the trochoid length depends on the

0 17Troubleshooting

xCoreControl System User Manual 425

distance between the start point, the auxiliary

point, and the end point

50012

The start point of the

trochoid is too close to the

auxiliary point. Failed to

generate trochoid

The start point of the trochoid is

too close to the auxiliary point.

Failed to generate trochoid

1. Adjust the distance between the point

positions of the start point and the auxiliary

point of the trochoid. 2. Conditions for

generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50013

The end point of the

trochoid is too close to the

auxiliary point. Failed to

generate trochoid

The end point of the trochoid is

too close to the auxiliary point.

Failed to generate trochoid

1. Adjust the distance between the point

positions of the end point and the auxiliary

point of the trochoid. 2. Conditions for

generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50014

The start point, the auxiliary

point, and the end point of

the trochoid are on the same

straight line. Failed to

generate trochoid

The start point, the auxiliary point,

and the end point of the trochoid

are on the same straight line.

Failed to generate trochoid

1. Adjust the distance between the point

positions of the start point, the auxiliary

point, and the end point of the trochoid. 2.

Conditions for generating a trochoid are as

follows: the specified radius is more than 1

mm; the specified feed is more than 1 mm;

the trochoid length is more than the sum of

two radii and one and a half feeds. Note that

the trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50015

The specified radius is too

small. Failed to generate

trochoid

The specified radius is too small.

Failed to generate trochoid

1. Increase the specified radius. 2. Conditions

for generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

0 17Troubleshooting

426 xCoreControl System User Manual

50016

The specified feed is too

small. Failed to generate

trochoid

The specified feed is too small.

Failed to generate trochoid

1. Increase the specified feed. 2. Conditions

for generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50017

The specified radius of the

trochoid is less than the

feed. Failed to generate

trochoid

The specified radius of the

trochoid is less than the feed.

Failed to generate trochoid

1. The specified radius should not be less

than the specified feed. 2. Conditions for

generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50018

The trochoid is too short.

Failed to generate trochoid

The radius and feed are specified,

if the distance between the start

point and the end point is short, a

trochoid will not be generated

1. Reduce the specified radius or feed. 2.

Increase the distance between the start point

and the end point. 3. Conditions for

generating a trochoid are as follows: the

specified radius is more than 1 mm; the

specified feed is more than 1 mm; the

trochoid length is more than the sum of two

radii and one and a half feeds. Note that the

trochoid length depends on the distance

between the start point, the auxiliary point,

and the end point

50019

Internal error generating

path

Internal error generating path 1. Re-adjust the target point position, pose,

and arm angle. Note that the arm angle only

needs to be considered for 7-axis robots

50020

The set tool coordinate

system cannot match the

features of the current

model. Failed to generate

the path

The specified tool coordinate

system does not support the model

1. The tool coordinate system of the current

model must meet the following two

requirements – the method for holding:

hand-held, and position: x=0, y=0

50021
Exceeds range of motion 1. The target point with the

specified confdata has no solution

1. Use the instruction ConfJ off to cancel

confdata; 2. Re-teach the point position

50022
Illegal Instructions 1. Illegal Instructions 1. Re-teach the point position; 2. Restart the

robot

50023
Singularity errors 1. The target point has no

teaching, or its conf information is

Modify the target point conf

0 17Troubleshooting

xCoreControl System User Manual 427

incorrect

50024

The incorrect trajectory type

can make it impossible for

the robot to translate along

the specified direction,

please re-teach the point

position

The current robot can only

translate on the xz plane of the

base coordinate, and cannot

deviate from the xz plane of the

base coordinate system

Re-teach the point position

50025

The incorrect trajectory type

can make it impossible for

the robot to rotate along the

specified direction, please

re-teach the point position

While the current robot rotating,

its rotation axis must be in parallel

with the y-axis of the base

coordinate system

Re-teach the point position

50026

Waiting for the next motion

instruction to be analyzed

for too long,automatically

cancel the turning area

Insert too many non-motion

commands between two motion

commands,automatically cancel

the turning area

1. Run the RL command "AotoIgnoreZone

Off",The system will not automatically

cancel the turning zone. 2.Simplify the

non-motion instruction between two motion

instructions

50027

Track length less than

minimum turning radius,

automatic path splicing,

integrated turning area.

1.The trajectory needs to be

connected to the turning area both

front and back, but the length of

the trajectory is less than twice the

radius of the minimum turning

area; 2.The track is set to connect

to a turning area, but the track

length is less than the minimum

turning area radius

This function can make the movement

smoother. If you want to turn off this

function, you can set the minimum turning

area radius to 0

50028

The spiral's initial radius is

less than zero. Failed to

generate spiral

The spiral's initial radius is less

than zero. Failed to generate spiral

1. Increase the spiral's radius step. 2.

Conditions for generating a spiral are as

follows: the initial radius is not less than 0;

the radius step is more than 0.0001 mm/deg;

the cumulative rotation angle is between 0.1

and 3600 deg;

50029

The spiral's radius step is

too low. Failed to generate

spiral

The spiral's radius step is too low.

Failed to generate spiral

1. Increase the spiral's radius step. 2.

Conditions for generating a spiral are as

follows: the initial radius is not less than 0;

the radius step is more than 0.0001 mm/deg;

the cumulative rotation angle is between 0.1

and 3600 deg;

50030

The spiral's cumulative

rotation angle is illegal.

Failed to generate spiral

The spiral's cumulative rotation

angle is illegal. Failed to generate

spiral

1. Increase the spiral's cumulative rotation

angle. 2. Conditions for generating a spiral

are as follows: the initial radius is not less

than 0; the radius step is more than 0.0001

mm/deg; the cumulative rotation angle is

between 0.1 and 3600 deg;

0 17Troubleshooting

428 xCoreControl System User Manual

50031

Trajectory error. Spiral

trajectory does not support

handheld work objects

Spiral trajectory does not support

handheld work objects

Replace with handheld tools

50033

Wrong trajectory,the

endpoint deviates from lock

axis angle

The endpoint deviates from lock

axis angle(0,180,-180)

Adjust the endpoint or close lock axis

50034

Unable to reach the target in

the locked axis state or

5-axis robot.Please change

the target

Unable to reach the target in the

locked axis state or 5-axis

robot.Please change the target

Unable to reach the target in the locked axis

state or 5-axis robot.Please change the target

50035

Unable to generate

trajectory of identification in

the locked axis, Please close

lock axis

trajectory couldn't be generated

correctly in the locked axis state

Please close lock axis

50036
5 axis robot unable to do

load identification

5 axis robot unable to do load

identification

none

50040

Unable to do identification

because the soft limit is not

enabled

The soft limit is not enabled Please enable the soft limit

50041

Unable to do identification

because the joint position

limitation is incorrectly set

The joint position limitation is

incorrectly set

Please set the joint position limitation

correctly

50042

The stating point of this

trajectory is incorrect， this

robot needs to keep flange

parrallel to the base

The stating point of this trajectory

is incorrect， this robot needs to

keep flange parrallel to the base

Re demonstrate teaching points

50043

The target point of this

trajectory is incorrect， this

robot needs to keep flange

parrallel to the base

The target point of this trajectory

is incorrect， this robot needs to

keep flange parrallel to the base

Re demonstrate teaching points

50044

The back direction is wrong.

Please move towards the

work area direction.

The back direction is wrong.

Please move towards the work

area direction.

Please move towards the work area direction.

50101

The joint angle exceeds

limit

The axis-angle motion exceeds the

motion range

1. Cancel the joint position limitation 2.

Manually move each axis of the robot to the

normal working range

50102

During the lookahead of the

trajectory, encounter

singularities

There are trajectories across

singularities

Please avoid singularities (refer to the manual

for the relevant information): 1. Re-teach the

point position, and change the target point; 2.

Or change the Cartesian space motion

instruction to the joint space motion

instruction

50103
Position incompatibility Inability to move to the target

point of the given ConfData

1. Change the target point ConfData; 2.

Change to MoveJ or MoveAbsJ

0 17Troubleshooting

xCoreControl System User Manual 429

through the planning of the

Cartesian space

50104

During the lookahead, the

joint torque exceeds the

limit

1.The load value is set too high,

exceeding the robot's load-bearing

capacity; 2. The friction

coefficient of the robot is too high.

3. The electric overload

coefficient or transmission

overload coefficent of the robot is

too small.

1.Check if the load values match the actual

situation. 2. Check parameters such as

friction coefficent,motor overload

coefficient,transmission overload coefficient;

3. Try to change the type of the instruction,

for instance, change the Cartesian space

instruction to the joint space instruction;

50105

Lookahead points are not

continuous

1. Program logical problems;

2.Dynamic parameters errors,

there are parameters not covered

in the reasonable range

1. Modify program logic; 2. Check dynamic

parameters; 3. Change the point position or

the blending

50106

The staring point of the

trajectory is greater than the

ending point one, and the

trajectory is unreasonable

Program logical problems For program logical problems, modify the

point position of the program, or modify its

blending

50107
Generate the incorrect

trajectory of the blending

Internal Error Cancel the blending, change the size of the

blending or the target point

50108

The new trajectory was not

obtained in time, and the

motion stopped

System failure

50109

The empty queue of the

trajectory makes it

impossible to execute the

planning

Set trajectory errors Avoid generating the blending between the

two reversed trajectories or reduce the length

of the blending

50110
Unable to get the initial

position of the program

Unable to get the initial position

of the program

1. Modify program logic; 2. Modify the size

of the blending of the first trajectory

50111
The positions of the two

trajectories cannot connect

The positions of the two

trajectories cannot connect

1 Re-teach the point position; 2. Modify the

size of the blending

50112

Incorrect entered poses Incorrect entered poses 1. Re-teach the pose, 2. If the current model

is 3-axis or 4-axis robot, please check

whether the entered pose matches the features

of the current model

50113

[WristSing]the change of

robot posture is over the

limitation

[WristSingthe change of robot

posture is over the limitation

Please avoid singularities (refer to the manual

for the relevant information):1. Re-teach the

point position, and change the target point 2.

Reset larger posture limitation 3. Try

different type singular avoidence

50114

The joint angle exceeds

limit

The axis-angle motion exceeds the

motion range

1. Cancel the joint position limitation 2.

Manually move each axis of the robot to the

normal working range

50115 There are singularities During the lookahead, the Please avoid singularities (refer to the manual

0 17Troubleshooting

430 xCoreControl System User Manual

during the lookahead of the

trajectory. Please avoid the

singularities

trajectory goes across the

singularity

for the relevant information): 1. Re-teach the

point position, and change the target point; 2.

Or change the Jog Mode and try to use Joint

space Jog; 3. Or change the Cartesian space

motion instruction to the joint space motion

instruction

50116

During the lookahead of the

trajectory, encounter

singularities

The joint of trajectories is a

singularity

Please avoid singularities (refer to the manual

for the relevant information): 1. Re-teach the

point position, and change the target point; 2.

Add wait0 after the incorrect trajectory

50117

[WristSing]During the

lookahead, the trajectory

goes across the

shoulder/elbos singularity

[WristSing]During the lookahead,

the trajectory goes across the

shoulder/elbos singularity

Please avoid singularities (refer to the manual

for the relevant information):1. Re-teach the

point position, and change the target point 2.

Try different sing type

50118

[WristSing]During the

lookahead of the trajectory,

the end pos dose not match

required value

[WristSing]During the lookahead

of the trajectory, the end pos dose

not match required value, unable

get a certain path

Please avoid singularities (refer to the manual

for the relevant information):1. Re-teach the

point position, and change the target point 2.

Try different sing type

50119
Unable to open the singular

avoidance when using track

Unable to open the singular

avoidance when using track

close the track

50120

[WristSing]Search end point

joint failed

[WristSing]Search end point joint

failed. Probabaly because the end

point is singular point or approach

position limitation.

Please avoid singularities (refer to the manual

for the relevant information):1. Re-teach the

point position, and change the target point 2.

Try different sing type

50121

[WristSing]Search path

point joint failed

[WristSing]Search path point joint

failed. Probabaly because the end

point is singular point or approach

position limitation.

Please avoid singularities (refer to the manual

for the relevant information):1. Re-teach the

point position, and change the target point 2.

Try different sing type

50122

Unable to open the singular

avoidance when using fc

model

Unable to open the singular

avoidance when using fc model

close the fc model

50123

Singular avoidance doesn't

support recent path type,

please change to cartesian

linear path

Singular avoidance doesn't

support recent path type, please

change to cartesian linear path

Please change path type to cartesian linear

50124

The angle between the upper

and lower arms exceeds the

safe range

The angle between the upper and

lower arms exceeds the safe range

Please change target point

50125

The angle between the upper

and lower arms exceeds the

safe range

The angle between the upper and

lower arms exceeds the safe range

Please change motion type

50126
During the lookahead, joint

max speed exceeds limit

1.The joint speed is set too small 1.Increase the maximum joint speed

50127 During the lookahead, joint 1.The joint acceleration is set too 1.Increase the maximum joint acceleration

0 17Troubleshooting

xCoreControl System User Manual 431

max acceleration exceeds

limit

small

50128
During the lookahead, joint

max jerk exceeds limit

1.The joint jerk is set too small 1.Increase the maximum joint jerk

50201

The Cartesian path

encounters the unreachable

point

The Cartesian path encounters

singularities

Change the trajectory, or move to the target

position through the joint space

50202

The Cartesian path

encounters illegal poses

The target point in the Cartesian

path cannot match the

configuration of the current robot

Re-teach the target point, and change it the

teaching point if the target point is manually

entered

50203 Path planning errors Internal Error

50204

Insufficient sampling points

during the process of

planning

1. There are too many logic

judgments or too much calculation

of point positions inserted

between the two motion

instructions; 2. The state of the

IPC is unstable, please check

whether there is the non-xCore

program operating in the robot

1. Modify the RL project, and restart its

operation; 2. Close the Linux background

program of the non-xCore control system

50205

Too much difference in

adjacent instruction points

during motion planning

Controller error, there is a great

difference in adjacent instruction

points during motion planning,

exceeding the limit

1. Re-teach the target point position of the

trajectory; 2.Try to change the type of the

instruction, for instance, change MoveL to

MoveJ; 3. Add wait0 after the incorrect

trajectory to refresh the state

50206

Incorrect internal calculation

of path planning

The calculation of controller

planning is incorrect

1. Re-teach the target point position of the

trajectory; 2.Try to change the type of the

instruction, for instance, change MoveL to

MoveJ; 3. Try to change the size of the

blending of the trajectory and the expected

speed; 4. Add wait0 after the incorrect

trajectory to refresh the state

50207

Not stopped at end point of

path

Incorrect planning, and stop

somewhere in the middle of the

robot path

Change the specified motion parameters (the

size of the blending, and the position of the

target point), or change the pose of the target

point, or change the motion instruction (such

as change MoveL to MoveJ)

50208
Trajectory internal error Trajectory internal error 1. Expand or reduce the blending. 2. Teach

point positions again

50209
Failed to stop within the

specified stopping distance

The specified stopping distance is

too short

Increase the stopping distance

50210

Path turn angle deviation

exceeds limit

Actual Cartesian path turn angle

differs significantly from

programmed value

1. Use 'ConfL off' command to bypass this

warning; 2. Reteach target point with turn

angle closer to starting point

50211 Constraint violation detected 1. Load setting exceeds robot 1. Verify actual load matches settings; 2.

0 17Troubleshooting

432 xCoreControl System User Manual

during planning while

stationary

capacity; 2. Excessive friction

coefficient; 3. Motor/servo

overload coefficient too small; 4.

Planning calculation error

Check friction/motor/transmission overload

coefficients; 3. Try changing command type

(e.g., switch from Cartesian to joint space); 4.

Contact technical support

50301

The thread for motion

planning is blocked.

Execution timed out

The thread for motion planning is

blocked. Execution timed out

Use PPtoMain again to run projects or restart

the controller

50302

The thread for motion

planning is blocked.

Scheduling timed out

System failure Use PPtoMain again to run projects or restart

the controller

50303

The thread for motion

planning is blocked.

Consecutive timeout over

5000 times

System failure Use PPtoMain again to run projects or restart

the controller

50304

No sufficient commands are

sent from the planner to the

EtherCAT thread

System failure

30400

Robot stopped due to

collision. Check the robot

operating environment and

confirm that the staff and

devices are safe before

restart

Robot collision 1.Check the robot operating environment,

confirm that the staff and devices are safe,

and power on the robot, before restart

30401

Robot stopped due to

collision. Check the robot

operating environment and

confirm that the staff and

devices are safe before

restart

Robot collision 1. Check the robot operating environment,

confirm that the staff and devices are safe,

and power on the robot, before restart; 2.

Check whether the current Tool setting is

consistent with the actual situation and

whether the set tool mass center is reasonable

30402

Robot stopped due to

collision. Check the robot

operating environment and

confirm that the staff and

devices are safe before

restart

Robot collision 1. Check the robot operating environment,

confirm that the staff and devices are safe,

and power on the robot, before restart; 2.

Check whether the current Tool setting is

consistent with the actual situation and

whether the set tool mass center is reasonable

30403

Robot stopped due to

collision. Check the robot

operating environment and

confirm that the staff and

devices are safe before

restart

Robot collision 1. Check the robot operating environment,

confirm that the staff and devices are safe,

and power on the robot, before restart; 2.

Check whether the current Tool setting is

consistent with the actual situation and

whether the set tool mass center is reasonable

50401
Set max torque limit failed The max torque limit is out of

range, set parameter failed

Set correct max torque limit

50501 Tool and work object Set "handheld" for both work Select correct tool and wobj

0 17Troubleshooting

xCoreControl System User Manual 433

coordinate system settings

conflict

objects and tools

50502

Tool and work object

coordinate system settings

conflict

Set "external" for both work

objects and tools

Select correct tool and wobj

50503

Tool and work object

coordinate system settings

conflict

Set "handheld" for both work

objects and tools

Select correct tool and wobj

50504

Tool and work object

coordinate system settings

conflict

Set "external" for both work

objects and tools

Select correct tool and wobj

50506
Category 1 internal mode

error of motion modules

Internal error Restart robot. If the problem persists, contact

technical support

50507
Category 2 internal mode

error of motion modules

Internal error Restart robot. If the problem persists, contact

technical support

50508
Failed to reset module status Internal error Restart robot. If the problem persists, contact

technical support

50509
Failed to set motion start

point

Internal error Restart robot. If the problem persists, contact

technical support

50510
Failed to generate

trajectories

Internal error Restart robot. If the problem persists, contact

technical support

50511

Failed to execute motion

command.

Current robot state does not

permit to execute any movement.

1.Interrupt current project and restart it from

beginning 2.Reboot robot. If the problem

persists, contact technical support

50512 Number of axes mismatches Software error Please contact the technical support

50513 Invalid speed settings Software error Please contact the technical support

50514 Invalid step length settings Software error Please contact the technical support

50515
Invalid settings of

coordinate systems

Software error Please contact the technical support

50516
Invalid settings of motion

axes

Software error Please contact the technical support

50517

End-effector rapid

adjustment failed. Teach

point positions again

1. End-effector rapid adjustment

failed due to special or extreme

positions

Teach point positions again within the normal

working range of robots

50518

The current point position

may be the target point

position

The current point position may be

the target point position

None

50519

Failed to generate

trajectories. Unqualified

target points

Target point positions may be out

of robot working range

Teach point positions again within the normal

working range of robots

50520

JOG mode error. Robot

cannot translate in the

specified direction. Modify

the JOG mode

The current robot can only

translate on the xz plane of the

base coordinate, and cannot

deviate from the xz plane of the

It is recommended that to choose the base

coordinate system or the joint coordinate

system when modifying the JOG mode

0 17Troubleshooting

434 xCoreControl System User Manual

base coordinate system

50521

JOG mode error. Robot

cannot rotate in the specified

direction. Modify the JOG

mode

The rotating axes of the robot

must be parallel to the Y-axis of

the base coordinate system, or the

robots rotate along the Z-axis of

the flange coordinate system

It is recommended that to choose the base

coordinate system or the joint coordinate

system when modifying the JOG mode

50522

Trajectory error. 4-axis PCB

robots do not support

handheld work objects and

external tools

4-axis PCV robots do not support

handheld work objects and

external tools

Replace with handheld tools

50523

The robot already reached

end point of trajectory

When you click Next, the robot

have reached the end point of the

trajectory. The robots will not

move

Confirm whether you want to stop the robot

at the end point of the trajectory. To move the

robot to the end point of the next trajectory,

click Next

50524

JOG failed to open, missing

key motion parameters

The current robot configuration

file lacks key motion parameters

and does not allow JOG

Confirm that the configuration file is updated

50525

The axis4 angle is not 0 or

180 degrees,please jog j4 to

0 or 180 degrees firstly

The robot's axis4 angle is not 0 or

180 degrees,please jog j4 to 0 or

180 degrees firstly

The robot's axis4 angle is not 0 or 180

degrees,please jog j4 to 0 or 180 degrees

firstly

50526

The flange is not parallel to

the base,Please jog J4 and

Ry first to make the flange

parallel to the base

The flange is not parallel to the

base，it is not allowed to jog x y z

Please jog J4 and Ry first to make the flange

parallel to the base

50527

In the locked state, it is not

supported to hold the

workpiece

In the locked state, it is not

supported to hold the workpiece

it is supported to hold the tool

50528

The flange is not parallel to

the base,Please jog Ry to

make the flange parallel to

the base

The flange is not parallel to the

base，it is not allowed to jog x y z

Please jog Ry to make the flange parallel to

the base

50529 Invalid load settings Invalid load settings Please check the load setting

50530

The button is being clicked

too frequently.

The previous motion has not yet

fully stopped, so the current

motion cannot be initiated

Increase the time interval between

consecutive motions to prevent overly rapid

clicks.

50531

Rapid end-effector

adjustment failed, please

select the correct tool or the

correct coordinate system

1. The tool is an external tool, and

the adjustment is based on a

coordinate system that is the

robot's base coordinate system

Select the correct tool or the correct

coordinate system

50532

Turn off precision

compensation state

When the precision compensation

state is enabled, singular

avoidance and parallel pedestal

jog cannot be enabled

Turn off precision compensation state

50601 Dynamics disabled. Torque feedforward disabled. Enable torque feedforward

0 17Troubleshooting

xCoreControl System User Manual 435

Resetting the torque

feedforward may cause a

sudden power-on jitter

Torque feedforward reset

50602 Friction identification

50603
VirbrationSuppression

Failed

50604 GravityCompensation Failed

50605

Open Collision Detection

delay compensation

parameters identification

failed, torque feedforward is

closed

torque feedforward is closed Open torque feedforward

50701
Command data lost during

transmission

Command data lost during

transmission

Restart the program

50702

The configuration file dose

not match the controller

version;

The configuration file does not

match the controller version;

Please download the latest version of the

configuration file on the SW website and

upgrade it to the controller;

50801

Trajectory type is not

supported in weaving mode

Weaving mode does not support

joint-space trajectory, pure

rotation trajectory or trochoid

trajectory

Do not use cartesian-space trajectory, pure

rotation trajectory or trochoid trajectory

50802

When the network is

disconnected or unstable,

the robot will stop moving.

During JOG, motion to or quick

adjustment, stop the robot

movement to prevent machine

collision due to network

disconnection or network

instability.

Please check that the network connection is

normal, ensure that the network environment

is stable, and retry the JOG, motion to, or

quick adjustment operation.

17.1.56XXXX
Code Description Possible Reasons Solution

60000
RL instruction parameter error RL instruction parameter error Modify the instruction and enter the

correct parameter.

60001
SocketReadBit parameter error RL encounters an error while

running.

Parameters of SocketReadBit must be

multiples of 8.

60002
SocketReadBit failed to read

data.

RL encounters an error while

running.

SocketReadBit failed to read data (data

length mismatch).

60003
SocketReadDouble illegally

reads data.

RL encounters an error while

running.

SocketReadDouble illegally reads data.

60004
SocketReadDouble failed to

read data.

RL encounters an error while

running.

SocketReadDouble failed to read data

(data length mismatch).

60005

Failed to load RL project. 1. rsync configuration file is

incorrect or missing. 2. The hmi

version does not match. 3. The RL

project file is accidentally

1. Configure the correct operating

environment. 2. Check the corresponding

HMI version. 3. Contact technical

support.

0 17Troubleshooting

436 xCoreControl System User Manual

modified. 4. Network failure.

60006
The robot is running. pptomain

failed.

Robot is running, pptomain is not

allowed.

Press Pause or Emergency Stop to shut

down the robot.

60007

The joint position limitation is

not enabled. Single-step

debugging is not allowed.

The joint position limitation is not

enabled. Single-step debugging is

not allowed.

Open joint position limitation settings in

the setting interface.

60008
Running speed synchronization

failed. Cancel the next step.

Running speed synchronization

failed. Cancel the next step.

Pause and restart the controller.

60009

RL is running or the actuator

encounters an error. The next

step is rejected.

RL is running or the actuator

encounters an error. The next step

is rejected.

If RL is running, wait for RL to stop or

click Pause; If the actuator encounters an

error, click pp_to_main to re-execute.

60010
Failed to start interpreter,

unable to perform the next step.

Failed to start interpreter, unable to

perform the next step.

Restart the controller or contact technical

support.

60011

An error occurred during RL

task execution. The task

stopped.

An error occurred during RL task

execution. The task stopped.

Switch to the corresponding task to check

the logic error near the program pointer,

and after eliminating the error, pptomain

will run again.

60012
GetSocketConn failed. The connection does not exist or

has been disconnected.

Execute this command after

SocketConnect is connected.

60013
GetSocketServer failed. The connection does not exist or

has been disconnected.

Execute this instruction after

SocketServer is in listening state.

60014

Unable to start running the RL

program.

The program failed to start running

because: 1) the robot is not

powered on; 2) the robot is running.

Make sure the robot is powered on and is

not running.

60015
Reload project failed，variables

are too much.

1.Project variable overlimit 14000. Project variable overlimit

60100
Parameter error of HexToDec RL encounters an error while

running.

The string entered by HexToDec must be

a hexadecimal integer.

60101
StrToByte parameter error RL encounters an error while

running.

The string entered by StrToByte(string,

\Hex) must be a hexadecimal integer.

60102
StrToByte parameter error RL encounters an error while

running.

The string entered by StrToByte(string)

must be a decimal integer.

60103
StrToByte parameter error RL encounters an error while

running.

The string entered by StrToByte(string,

\Okt) must be an octal integer.

60104
StrToByte parameter error RL encounters an error while

running.

The string entered by StrToByte(string,

\Bin) must be a binary integer.

60105
StrToByte parameter error RL encounters an error while

running.

The string entered by StrToByte(string,

\Char) must be ASCII characters.

60106
The result of StrToByte

overflows.

RL encounters an error while

running.

The string data entered by

StrToByte(string HEX) overflows.

60107
The result of StrToByte

overflows.

RL encounters an error while

running.

The string data entered by

StrToByte(string DEC) overflows.

60108
The result of StrToByte

overflows.

RL encounters an error while

running.

The string data entered by

StrToByte(string OKT) overflows.

0 17Troubleshooting

xCoreControl System User Manual 437

60109
The result of StrToByte

overflows.

RL encounters an error while

running.

The string data entered by

StrToByte(string BIN) overflows.

60110
The result of StrToByte

overflows.

RL encounters an error while

running.

The string data entered by

StrToByte(string CHAR) overflows.

60111
The range of the StrPart string

exceeds the limit.

RL encounters an error while

running.

The range of the StrPart string exceeds

the limit.

60112
The StrMatch parameter is too

large to find.

RL encounters an error while

running.

The StrMatch parameter is too large to

find.

60113

The value range of BitPos

parameter of BitCheck

instruction exceeds the limit.

RL encounters an error while

running.

The value range of BitPos parameter of

BitCheck instruction exceeds the limit.

60114

The value range of BitPos

parameter of BitClear

instruction exceeds the limit.

RL encounters an error while

running.

The value range of BitPos parameter of

BitClear instruction exceeds the limit.

60115

The value range of ShiftSteps

parameter of BitLsh instruction

exceeds the limit.

RL encounters an error while

running.

The value range of ShiftSteps parameter

of BitLsh instruction exceeds the limit.

60116

The value range of ShiftSteps

parameter of BitRsh instruction

exceeds the limit.

RL encounters an error while

running.

The value range of ShiftSteps parameter

of BitRsh instruction exceeds the limit.

60117

The value range of BitPos

parameter of BitSet instruction

exceeds the limit.

RL encounters an error while

running.

The value range of BitPos parameter of

BitSet instruction exceeds the limit.

60198 Command failed

60199
Command executed

successfully

60200
An error occurs during FcInit

execution.

An error occurs during FcInit

execution.

Modify the FcInit instruction to the

correct instruction parameter.

60201
An error occurs during FcStart

execution.

An error occurs during FcStart

execution.

Modify the FcStart instruction to the

correct instruction parameter.

60202
An error occurs during FcPause

execution.

An error occurs during FcPause

execution.

Modify the FcPause instruction to the

correct instruction parameter.

60203
An error occurs during

FcRestart execution.

An error occurs during FcRestart

execution.

Modify the FcRestart instruction to the

correct instruction parameter.

60204
An error occurs during FcStop

execution.

An error occurs during FcStop

execution.

Modify the FcStop instruction to the

correct instruction parameter.

60205
An error occurs during

ClearFcError execution.

An error occurs during

ClearFcError execution.

Modify the ClearFcError instruction to

the correct instruction parameter.

60206
An error occurs during

SetControlType execution.

An error occurs during

SetControlType execution.

Modify the SetControlType instruction to

the correct instruction parameter.

60207
An error occurs during

SetJntCtrlStiffVec execution.

An error occurs during

SetJntCtrlStiffVec execution.

Modify the SetJntCtrlStiffVec instruction

to the correct instruction parameter.

60208
An error occurs during

SetCartCtrlStiffVec execution.

An error occurs during

SetCartCtrlStiffVec execution.

Modify the SetCartCtrlStiffVec

instruction to the correct instruction

0 17Troubleshooting

438 xCoreControl System User Manual

parameter.

60209
An error occurs during

SetCartNSStiff execution.

An error occurs during

SetCartNSStiff execution.

Modify the SetCartNSStiff instruction to

the correct instruction parameter.

60210
An error occurs during SetLoad

execution.

An error occurs during SetLoad

execution.

Modify the SetLoad instruction to the

correct instruction parameter.

60211
An error occurs during

StartOverlay execution.

An error occurs during

StartOverlay execution.

Modify the StartOverlay instruction to

the correct instruction parameter.

60212
An error occurs during

StopOverlay execution.

An error occurs during StopOverlay

execution.

Modify the StopOverlay instruction to the

correct instruction parameter.

60213
An error occurs during

PauseOverlay execution.

An error occurs during

PauseOverlay execution.

Modify the PauseOverlay instruction to

the correct instruction parameter.

60214
An error occurs during

SetSineOverlay execution.

An error occurs during

SetSineOverlay execution.

Modify the SetSineOverlay instruction to

the correct instruction parameter.

60215

An error occurs during

SetLissajousOverlay execution.

An error occurs during

SetLissajousOverlay execution.

Modify the SetLissajousOverlay

instruction to the correct instruction

parameter.

60216
An error occurs during

SetJntTrqDes execution.

An error occurs during

SetJntTrqDes execution.

Modify the SetJntTrqDes instruction to

the correct instruction parameter.

60217
An error occurs during

SetCartForceDes execution.

An error occurs during

SetCartForceDes execution.

Modify the SetCartForceDes instruction

to the correct instruction parameter.

60218
An error occurs during

RestartOverlay execution.

An error occurs during

RestartOverlay execution.

Modify the RestartOverlay instruction to

the correct instruction parameter.

60219
An error occurs during

SetSensorUseType execution.

An error occurs during

SetSensorUseType execution.

Modify SetSensorUseType to the correct

parameter.

60220
An error occurs during

CalibSensorError execution.

An error occurs during

CalibSensorError execution.

Modify CalibSensorError to the correct

parameter.

60221
An error occurs during

FcCondForce execution.

An error occurs during

FcCondForce execution.

Modify the FcCondForce instruction to

the correct instruction parameter.

60222
An error occurs during

FcCondPosBox execution.

An error occurs during

FcCondPosBox execution.

Modify the FcCondPosBox instruction to

the correct instruction parameter.

60223
An error occurs during

FcCondTorque execution.

An error occurs during

FcCondTorque execution.

Modify the FcCondTorque instruction to

the correct instruction parameter.

60224

An error occurs during

FCCondWaitWhile execution.

An error occurs during

FCCondWaitWhile execution.

Modify the FCCondWaitWhile

instruction to the correct instruction

parameter.

60225
An error occurs during

FcCondOrient execution.

An error occurs during

FcCondOrient execution.

Modify the FcCondOrient instruction to

the correct instruction parameter.

60226
An error occurs during

FcCondPosSphere execution.

An error occurs during

FcCondPosSphere execution.

Modify the FcCondPosSphere instruction

to the correct instruction parameter.

60227

An error occurs during

FcCondPosCylinder execution.

An error occurs during

FcCondPosCylinder execution.

Modify the FcCondPosCylinder

instruction to the correct instruction

parameter.

60228
An error occurs during

FcCondTcpSpeed execution.

An error occurs during

FcCondTcpSpeed execution.

Modify the FcCondTcpSpeed instruction

to the correct instruction parameter.

0 17Troubleshooting

xCoreControl System User Manual 439

60229
Inverse kinematics of

CalcJointT failed.

The conf error of Cartesian

coordinates

Modify the entered Cartesian coordinates.

60300
ReplayPath playback rate

exceeded limit.

RL encounters an error while

running.

ReplayPath playback rate exceeded limit.

60400
RL call hierarchy exceeds limit. RL encounters an error while

running.

RL call hierarchy exceeds limit.

60500
Cannot load multiple motion

tasks.

Cannot load multiple motion tasks. Assign only one task as the motion task.

60501
Predecessor task error The predecessor task cannot be

itself.

Modify predecessor tasks to other tasks.

60502
Motion task is not allowed to

set predecessor task.

Motion task is not allowed to set

predecessor task.

Motion task is not allowed to set

predecessor task.

60503

The motion instruction cannot

hold the workpiece and the tool

at the same time.

The motion instruction cannot hold

the workpiece and the tool at the

same time.

Modify the instruction for the tool and

wobj parameter.

60504
Invalid Search instruction input

signal

The signal type is neither a DI

signal nor register

Use the correct DI signal or register.

60505

The Search instruction failed to

record the point position.

The tool and the workpiece are

simultaneously hand-held or

external.

Modify parameters and use tools and

workpieces at different positions.

60506
An error occurs in the Search

instruction DI signal.

The DI signal does not exist or has

been set as the system input.

Modify the parameter and use the DI

signal that is not set as the system input.

60507

SearchL \Stop instruction, the

speed is greater than v100.

The robot can be stopped quickly

only when the speed is less than or

equal to v100.

Use a smaller speed parameter.

60508

SearchC \STOP instruction, the

speed is greater than v100.

The robot can be stopped quickly

only when the speed is less than or

equal to v100.

Use a smaller speed parameter.

60509

Wrong program state, cannot

perform the next step.

1. Cannot reach the motion

instruction point; 2. Move through

a singular point;

1. Check the list of point positions; 2.

Optimize the motion trajectory; 3. Click

PPtoMain.

60510
The RL instruction runs too

slowly.

Tcp < 1μm/s or ori < 1e-6°/s or

jnt < 1%;

The motion instruction adopts a proper

speed parameter.

60511
The drag playback path is

missing/does not exist.

The drag playback path is

missing/does not exist.

Record/use a valid playback path.

60512
Drag playback function error Drag playback function error Check whether the drag playback

function is effective.

60513
HomeSet instruction range

error.

Setting the home point angle

exceeds the limit.

Modify the angle of the Home point to be

within the hard limit range of the robot.

60514
Saving Home parameter failed. Robot configuration module error Try restarting the robot or contact the

manufacturer.

60515
HomeSetAt acquisition failed. The axis specified by HomeSetAt

does not exist.

Modify the parameters of HomeSetAt.

60516 The HomeClr instruction failed. Robot configuration module error Try restarting the robot or contact the

0 17Troubleshooting

440 xCoreControl System User Manual

manufacturer.

60517
Wrong number of HomeSet

parameters

Wrong number of HomeSet

parameters

Modify the number of parameters to that

of the robot axes.

60518
Wrong number of Hordr

parameters

Wrong number of Hordr parameters Modify the RL file and transfer the

correct Hordr parameters.

60519
Hordr parameter value error Hordr parameter value error Modify the RL file and transfer the

correct Hordr parameters.

60520
HordrAt parameter value error HordrAt parameter value error Modify the RL file and transfer the

correct Hordr parameters.

60521

GetEndtoolTorque tool is not

compatible with the workpiece.

The tool and the workpiece are

simultaneously hand-held or

external.

Modify the GetEndtoolTorque instruction

and transfer the correct tool, wobj

parameter.

60522

GetEndtoolTorque end

coordinate system type error

Undefined end coordinate system

type

Modify the GetEndtoolTorque instruction

and transfer the correct type parameter of

coordinate systems: 0-2.

60523
AccSet parameter exceeds the

limit range of 30% ~ 100%.

AccSet acceleration and jerk are

limited to 30% ~ 100%.

Modify the AccSet instruction parameter.

60524
Quaternion parameter error The sum of squares of quaternions

of variables should be equal to 1.

Modify the corresponding quaternions to

correct value.

60525
OpenDev port error Available ports [0, 65535] Modify the OpenDev port to the correct

value.

60526

Starting program failed due to

robot is in error state. Please

check recently error record.

Starting program failed due to robot

is in error state. Please check

recently error record.

1.Fix RL-Language error or logic error;

2.PPtoMain and restart program

60527
Trigger instruction parameter

error

The trigdata set by TrigVar

instruction does not exist

Create the target var to modify and set

the trigdata with TrigVar instruction.

60528

Trigger instruction parameter

error

The DO/GO/register variable set by

trigdata does not exist; or the output

signal is not set; or the register is

not writable

Create the output signal (or a writable

register) and set it with TrigIO/TrigReg

instruction.

60529

Failed to start RL program. The

robot is busy.

1. The robot is running and cannot

be started repeatedly; 2. The RL

file is being parsed and cannot be

started.

Wait for the register function code

"sta_robot_is_busy" to turn to 0 before

sending the start instruction

60530

Userframe's name is duplicated The input userframe is duplicated

by exist userframe, this userframe

may work incorrectly

Please check the userframe list and make

sure which frame is needed and delete the

wrong frame

60531

Tray data update failed 1. Tray name or workpiece No.

Error. 2. Failed to obtain data from

tray module. 3. Tray variable value

update

1. Check whether the parameter input in

the "TrayUpdate" function is incorrect. 2.

Contact after-sale.

60532
Failed to obtain workpiece

quantity of tray

1.Tray name error. 2. Failed to

obtain data from tray module.

1. Check if tray name error occurs. 2.

Contact after-sale.

60533 Failed to update palletizing data 1. The stacking name or workpiece Check whether the parameter input in the

0 17Troubleshooting

xCoreControl System User Manual 441

number is wrong or the layer

number is wrong. 2. Failed to

obtain data from the palletizing

module. 3. Stack variable value

update failed.

"PalletUpdate" function is incorrect

60534

Failed to get the number of

palletizing layers, the name $arg

does not exist

Wrong palletizing name Check the "PalletLayerCount" function

input parameter

60535
Failed to get artifact quantity Wrong palletizing name or layer

number

Please check the "PalletWobjCount"

function input arguments

60536
There is no pers value in

database, using default value

There is no pers value in database,

using default value

There is no pers value in database, using

default value

60537

Invalid tool or wobj or

userframe

Tool or wobj load error, possible

reasons: 1. Tool or tool_load has

wrong quaternion parameter; 2.

Wobj or its related userframe has

wrong quaternion parameter; 3.

Wobj failed to relate userframe,

need to re-edit wobj.

Edit and update related tools or wobjs or

userframes

60538
Movement trajectory param is

error

Movement trajectory param is error Please reset the correct motion

parameters.

60600

Failed to obtain parameters

during laser welding

Failed to obtain laser welding

configuration parameters.

Procedure

1. Check whether the laser welding

process parameter table is created. 2.

Check whether the corresponding

parameters in the laser welding process

parameter table are correct. 3. An internal

laser welding error occurs. Contact the

manufacturer

60601

Laser welding setup parameters

failed

Error in laser welding setup

parameters

1. Check the laser welding port

configuration to confirm whether the

register or IO configuration of the error

signal is wrong

60602

After the laser welding single

step, please perform the

PPToMain operation first before

continuing the operation

After a single step of laser welding,

the switch is not allowed to

continue running

After a single step of laser welding, it is

not allowed to switch to continue

running, please perform PPToMain

operation first

60603
Laser welding does not support

running from the cursor

Laser welding does not support

running from the cursor

Laser welding does not support running

from the cursor

60604
The laser welding process file

does not exist

The laser welding process file does

not exist

Please check that the process file in the

laser welding instruction has been created

60605

The current moving target point

coincides with the laser welding

start or end point

The current moving target point

coincides with the laser welding

start or end point, and the laser

welding timing cannot be triggered

1. Check the target point of the error

motion command so that the target point

does not coincide with the current robot

position

0 17Troubleshooting

442 xCoreControl System User Manual

normally

60606

The laser welding function is

turned off, do not use the laser

welding command

The laser welding function switch

is off

1.Turn on the laser welding function

switch 2.Delete the laser welding

instruction

60607

Unable to respond to external

program start signal, there is

currently an error alarm in the

controller, which needs to be

manually cleared before starting

There is an error alarm in the

current controller

Manually clear the alarm before starting

60608

Failed to switch project through

socket instruction

1.Switch to non-existent projects,

2.There are non semi static tasks

running

1.Switch existing projects, 2.Stop the

running task before proceeding with

project switching

60609
Successfully switched project

through socket instruction

Successfully switched project Successfully switched project

60610

Currently, there are registers or

system IO with program pause

function do not reset and do not

allow program startup

Currently, there are registers or

system IO with program pause

function do not reset

Reset the registers and system IO bound

with program pause function

60611
Robot is saving diagnose data,

can't start run program

Robot is saving diagnose data, can't

start run program

Wait 10s and restart again

60612

Configure tool and wobj are

conflict, using the last correct

configuration

The tool-wobj configured in the

upper right corner of the teach

pendant (HMI) cannot be calculated

by the robot. They are both

rob-hold or not rob-hold

Correctly configure the rob-hold tool or

rob-hold wobj to avoid conflicts

60613

Configure tool and wobj are

conflict and robot cannot move

The tool-wobj configured in the

upper right corner of the teach

pendant (HMI) cannot be calculated

by the robot. They are both

rob-hold or not rob-hold

Correctly configure the rob-hold tool or

rob-hold wobj to avoid conflicts

60614
Joint position limitation is

disabled, can't start run program

Joint position limitation is disabled Enable joint position limitation

60615
Soft shutdown is triggered, can't

start run program

Soft shutdown is triggered It is not suggested to start program at this

state

60700

Command execution of Jodell

device failed

The command execution fails due

to the abnormal communication

between the terminal and the Jodell

device

Check the hardware connection and retry

the execution

60701

Command execution of RM

device failed

The command execution fails due

to the abnormal communication

between the terminal and the RM

device

Check the hardware connection and retry

the execution

60702
Command execution failure for

opening fourth axis lock

Failure to meet the fourth axis

locking opening conditions

Please check if the current angle of the

fourth axis is 0 ° or 180 °

0 17Troubleshooting

xCoreControl System User Manual 443

resulting in opening failure

60703

Command execution failure for

closing fourth axis lock

Failure to meet the fourth axis

locking closing conditions resulting

in closing failure

60704

Command execution failure for

opening SingAreaWrist

Failed to open SingAreaWrist due

to not meeting the opening

conditions

Please check whether the openning

conditions are met

60705

Command execution failure for

closing SingAreaWrist

Failed to close SingAreaWrist due

to not meeting the closing

conditions

60706

Command execution failure for

opening SingAreaJointWay

Failed to open SingAreaJointWay

due to not meeting the opening

conditions

Please check whether the openning

conditions are met

60707

Command execution failure for

closing SingAreaJointWay

Failed to close SingAreaJointWay

due to not meeting the closing

conditions

60708

Robots that are not in standard

six axis configuration or CR six

axis configuration are not

allowed to use the

SingAreaLockAxis4 command

Robots that are not in standard six

axis configuration or CR six axis

configuration are not allowed to use

the SingAreaLockAxis4 command

Do not use the SingAreaLockAxis4

command or replace the robot

60709

Robots that are not in standard

six axis configuration or CR,

ER six axis configuration are

not allowed to use the

SingAreaWrist command

Robots that are not in standard six

axis configuration or CR, ER six

axis configuration are not allowed

to use the SingAreaWrist command

Do not use the SingAreaWrist command

or replace the robot

60710

Robots with non-standard six

axis configurations are not

allowed to use the

SingAreaJointWay command

Robots with non-standard six axis

configurations are not allowed to

use the SingAreaJointWay

command

Do not use the SingAreaJointWay

command or replace the robot

60711

The SingAreaLockAxis4

command is not allowed in non

motion tasks

The SingAreaLockAxis4 command

is not allowed in non motion tasks

Move the SingAreaLockAxis4 command

to a motion task

60712
The SingAreaWrist command is

not allowed in non motion tasks

The SingAreaWrist command is not

allowed in non motion tasks

Move the SingAreaWrist command to a

motion task

60713

The SingAreaJointWay

command is not allowed in non

motion tasks

The SingAreaJointWay command

is not allowed in non motion tasks

Move the SingAreaJointWay command

to a motion task

60714

Unable to resume continuous

operation, a special emergency

stop or collision detection has

occurred

1.Emergency stop planning

timeout, controller anomaly;

2.Emergency stop or collision

detection occurred during the

process of returning to the path

PPToMain and restart

60715 Device initialization execution Check init success Init successful，motion control can be

0 17Troubleshooting

444 xCoreControl System User Manual

sucessful performed

60716
Device initialization execution

failed

Hardware model mismatch or

incorrect connection

Check the connection or if the tool model

matches

60717

Command execution of Dh

device failed

The command execution fails due

to the abnormal communication

between the terminal and the Dh

device

Check the hardware connection and retry

the execution

60800
Unsupported move types The conveyor wobj only supports

MoveL and MoveC motion types

Change to MoveL or MoveC

60801

Conveyor belt, rail, and

positioner do not support

backward step.

Conveyor belt, rail, and positioner

do not support backward step.

Use pptoline or jog instead of backward

step.

60802
The current controller state does

not allow mode switching.

The current controller state does

not allow mode switching.

Try pptoline to reset advance pointer

60803
Task is not a motion task, can

not stepback

Task is not a motion task, can not

stepback

Choose a motion task for debug in RL

editor

60804
Task was finished, can not

stepback

Task was finished, can not stepback Try pptomain or pptoline instead of

stepback

60805

Task was finished or the task

pointer was in the status that

can't change work mode

Task was finished or the task

pointer was in the status that can't

change work mode

Try pptomain or pptoline to debug

60806
Trajectory first command failed

in stepback mode

Trajectory first command failed in

stepback mode

Try reset teaching point position

60807
Trajectory move failed in

stepback mode

Movement command's arguments

was invalid

1.Try reset teaching point position

2.Check RL program's input or logic

60900

Unsupported tool or wobj The tool and wobj cannot be both

handheld or external at the same

time

60901

Robotiq 2F_85 Init failed 1.Abnormal communication

between the end and Robotiq

device resulted in instruction

execution failure;2、Robotiq device

ID Error

1.Check the hardware connection and

execute it again;2.Enter the correct ID

and execute again

60902 Robotiq 2F_85 Get status failed

61000
Torque threshold setting failed Condition not met, torque threshold

setting failed

61001

Collision detection not enabled,

MotionSup On command

cannot be used

Collision detection not enabled,

MotionSup On command cannot be

used

Enable collision detection

61002
Error getting envelope

information

Incorrect getting of envelope

information

61003
Obtaining the nickname of the

pallets failed

Function stack number error Please enter the correct number number

61004 Failed to trigger interrupt. Task Task does not exist.

0 17Troubleshooting

xCoreControl System User Manual 445

does not exist.

61005

Failed to trigger interrupt. Non

sports tasks do not trigger

interrupts.

Non sports tasks do not trigger

interrupts.

Please set interrupts in the exercise task.

61006

Failed to trigger interrupt. There

are interrupts that have been

triggered but not executed.

There are interrupts that have been

triggered but not executed.

Please trigger another interrupt after one

interrupt is completed

61007

Failed to trigger interrupt.

Single step mode, \DEBUG

option not selected, this

interrupt will not trigger.

Single step mode, \DEBUG option

not selected, this interrupt will not

trigger.

If you want to trigger an interrupt in

single step mode, please select the

\DEBUG option.

61008

Failed to trigger interrupt, in

continuous mode pause state,

the interrupt is not triggered.

Continuous mode - paused state,

the interrupt is not triggered..

If you want to trigger an interrupt in

pause mode, select the \ \ DEBUG option

and switch to single step mode

61009

Failed to trigger interrupt. Task

is resetting, this interrupt will

not trigger.

Task is resetting, this interrupt will

not trigger.

61010

Failed to trigger interrupt. Task

is executing interrupt, this

interrupt will not trigger.

Task is executing interrupt, this

interrupt will not trigger.

Please trigger another interrupt after one

interrupt is completed

61011
Failed to trigger interrupt. The

interrupt function does not exist.

The interrupt function does not

exist.

Please check if the interrupt function

exists.

61012
Failed to trigger interrupt.

Interpreter coroutine is full.

Interpreter coroutine is full.

61013

Failed to trigger interrupt.

Please trigger an interrupt

during task execution.

Task runs to the endproc. Please trigger an interrupt during task

execution.

61014

Failed to trigger interrup.

Interrupt is turned off, note: if

triggered once, it should not

respond.

Interrupt closed by IDisable Please trigger the interrupt after IEable

61015

An instruction that is not

allowed to be executed within

the interrupt function has been

executed

An instruction that is not allowed to

be executed within the interrupt

function has been executed

Do not execute instructions that are not

allowed within interrupt functions

61016
Satisfy waituntil during

interruption.

Satisfy waituntil during

interruption.

61017 Trigger interrupt failed

61018

The program failed to start due

to not being synchronized with

the controller.

The program changes in the HMI

have not been synchronized to the

controller, and starting the program

via system IO, register function

code, or external communication is

prohibited.

Please click pptomain or perform a reload

operation via the teach pendant before

executing the program startup operation.

0 17Troubleshooting

446 xCoreControl System User Manual

61019

Inconsistent tool usage caused

the recipe to fail during

execution

The tool configuration used in the

project was changed, but the recipe

file was not synchronized and

updated

Update the recipe to match the tool used

in the project, and then rerun the program

61020

Vibration suppression command

execution failed

This model does not currently

support the vibration suppression

function

61030

Execution of motion command

failed

PathRecStart has been executed and

path recording has been enabled.

This instruction cannot be recorded

Cannot execute unrecorded motion

commands between PathRecStart and

PathRecStop

61031
Record path related instruction

execution failed

61032

Failed to update palletizing data 1. The stacking name or workpiece

number is wrong or the layer

number is wrong. 2. Failed to

obtain data from the palletizing

module. 3. Stack variable value

update failed.

Check whether the parameter input in the

"PalletUpdateByUniversal" function is

incorrect

61033

Failed to get the number of

palletizing layers, the name $arg

does not exist

Wrong palletizing name Check the

"PalletLayerCountByUniversal" function

input parameter

61034

Failed to get artifact quantity Wrong palletizing name or layer

number

Please check the

"PalletWobjCountByUniversal" function

input arguments

0 17Troubleshooting

xCoreControl System User Manual 1

Beijing Headquarters:

Floor 7, Block A, Haiqing Building, No. 6 Agriculture

Science Academy West Road, Haidian District, Beijing

Shandong Branch:

No. 888, Hengfeng Road, Electromechanical Industrial

Park, Zhongxindian Town, Zoucheng, Jining

Suzhou Branch:

1-A1F, Creative Industry Park, No. 328, Xinghu Street,

Suzhou Industrial Park

Shenzhen Branch:

1/F, Building 10, Fu'an Robot Intelligent Manufacturing

Industrial Park, Bao'an District, Shenzhen

Website: http://www.rokae.com

Tel.: 400-010-8700

WeChat Official Account:

ROKAE

WeChat ID: Rokae-Tech

ROKAE

	Contents
	1Manual Overview
	1.1About the Manual
	1.2Target group
	1.3How to read the Manual
	1.4Illustrations in the Manual
	1.5Contact
	1.6Manual reading guide
	1.7Revision history of the Manual
	1.8Related manuals

	2Safety
	2.1Introduction
	2.2Safety responsibilities
	2.3Safety symbols
	2.3.1Safety level
	2.3.2Hazard description

	2.4Safe stop
	2.5Safety devices
	2.5.1Emergency stop (E-stop)
	2.5.2Enabling device

	2.6Safety precautions in various situations
	2.6.1Safety precautions in manual mode
	2.6.1.1Speed limit in manual mode
	2.6.1.2Bypassing external safety signals

	2.6.2Safety precautions in auto mode
	2.6.2.1Activating external safety signals

	2.6.3Safety requirements for installation and oper
	2.6.4Safety requirements for debugging
	2.6.5Safety requirements for maintenance
	2.6.6Safe handling on the production line
	2.6.7Safe handling of fire
	2.6.8Safe handling of electric shock

	3Glossary
	4Basic Knowledge of Robot
	4.1Introduction to this chapter
	4.2Frame
	4.3Singularity
	4.3.1Typical singular positions of robots
	4.3.1.1Singular position of the six-axis industria
	4.3.1.2Singular position of ER PRO collaborative r

	4.3.2Singularity avoidance

	4.4Turning zone
	4.5Lookahead mechanism
	4.6Force control
	4.6.1Introduction to force control
	4.6.2Impedance control
	4.6.3Force control search
	4.6.4Force control application
	4.6.4.1Constant force tracking
	4.6.4.2Force-controlled assembly

	5Robot System Structure and Connection
	5.1Introduction to this chapter
	5.2Control system structure
	5.2.1xPad2 Teach Pendant introduction

	5.3Industrial robot system composition
	5.3.1XBC5 series controller introduction
	5.3.2XBC5-M controller wiring, power-on, and start
	5.3.3XBC5 controller wiring, power-on, and start-u
	5.3.4XBC5-E controller wiring, power-on, and start

	5.4Collaborative robot system composition
	5.4.1ER and ER PRO
	5.4.2CR and SR
	5.4.3CR-C and SR-C
	5.4.3.1SR-C controller and its wiring, power-on an
	5.4.3.2CR-C controller and its wiring, power-on, a

	5.5HMI and robot connection
	5.5.1xPad2 and robot connection
	5.5.1.1Hardware connection
	5.5.1.2Connection configuration

	5.5.2PC and robot connection
	5.5.2.1Hardware connection
	5.5.2.2One-to-one HMI and robot connection
	5.5.2.3One-to-multiple HMI and robot connection
	5.5.2.4Wireless connection
	5.5.2.5Connection configuration
	5.5.2.6Direct cable connection
	5.5.2.7External network interface connection
	5.5.2.7.1 Direct cable connection of devices such
	5.5.2.7.2 Wireless connection of devices such as P
	5.5.2.7.3 IP address modification

	5.5.3Robot detection and connection

	6HMI Introduction
	6.1Introduction to this chapter
	6.2RobotAssist introduction
	6.3General layout of HMI
	6.3.1Top status bar
	6.3.2Left sidebar
	6.3.3Right operation interface
	6.3.4Bottom status bar

	6.4Status monitoring
	6.4.13D model monitoring
	6.4.2Task monitoring
	6.4.3IO signal monitoring
	6.4.4Network connection monitoring
	6.4.5Register monitoring
	6.4.6Conveyor belt monitoring
	6.4.7Variable monitoring

	6.5Programming module overview
	6.6Setting module overview
	6.7Communication module overview
	6.8Safety module overview
	6.9Process package module overview
	6.10Log module overview
	6.11Option module overview

	7Basic Operation of the Control System
	7.1Introduction to this chapter
	7.2Operating mode
	7.2.1Switch manual
	7.2.2Switch auto
	7.2.3Mode confirmation and switching
	7.2.3.1Switching from manual mode to automatic mod
	7.2.3.2Switching from automatic mode to manual mod

	7.3Power on and off
	7.3.1Motor on
	7.3.2Motor off

	7.4Motion control
	7.4.1Jog
	7.4.1.1Jog low-speed mode

	7.4.2Quick adjustment
	7.4.3Drag

	7.5Continuous trajectory playback
	7.6Operation example I: Industrial robots realize
	7.7Operation example II: CR collaborative robots r

	8Programming
	8.1Introduction to this chapter
	8.2Introduction to project
	8.3RL editor
	8.3.1Overview
	8.3.2Tool introduction
	8.3.3Auxiliary programming
	8.3.3.1 Insert command
	8.3.3.1.1 Example I: Insert MoveL command
	8.3.3.1.2Example II: Insert a function
	8.3.3.1.3Example III: Insert an element
	8.3.3.1.4Example IV: Insert math/logic/operator

	8.3.3.2 Attribute settings
	8.3.3.2.1 Example I: Configure the SetDO command a
	8.3.3.2.2 Example II: Configure the MoveAbsJ comma
	8.3.3.2.3 Example III: Configure the MoveL command

	8.3.4Point offset tool
	8.3.4.1Overview
	8.3.4.2Program offset parameters introduction
	8.3.4.3Angle offset parameters introduction
	8.3.4.4Mirror offset parameters introduction
	8.3.4.5Operation examples

	8.3.5Move to function
	8.3.5.1Operation examples

	8.3.6Show position function
	8.3.6.1Overview
	8.3.6.2Show position parameter settings

	8.3.7Split screen function
	8.3.7.1Overview
	8.3.7.2Steps

	8.3.8Tool/work object pointer following function

	8.4Project configuration
	8.4.1Robot selection
	8.4.2Project
	8.4.3Synchronization
	8.4.4Restore project
	8.4.5Project upgrade
	8.4.6Predefined parameters

	8.5Custom production
	8.5.1Overview
	8.5.2Basic operations
	8.5.3Control introduction
	8.5.3.1Single DI control
	8.5.3.2Single DO control
	8.5.3.3Register control
	8.5.3.4Point position update control
	8.5.3.5Project variable control

	8.6Task list
	8.6.1Task attributes
	8.6.2Regular tasks and motion tasks
	8.6.2.1New task
	8.6.2.2New program module
	8.6.2.3Starting and running
	8.6.2.4Inter-task communication

	8.6.3Semi-static task
	8.6.3.1Semi-static task creation
	8.6.3.2Starting and stopping of semi-static tasks
	8.6.3.3Configuring semi-static task for self-start
	8.6.3.4Safety level of semi-static tasks
	8.6.3.5Recommendations for semi-static task debugg

	8.6.4Task monitoring

	8.7List of variables
	8.7.1Variable naming rules
	8.7.2Variable scope
	8.7.3Storage type
	8.7.4Keywords pre-definition
	8.7.5Number system conversion
	8.7.6Variable declaration
	8.7.7User variable hold
	8.7.8Variable list operation
	8.7.8.1Variable viewing
	8.7.8.2Variable editing

	8.8Point list
	8.8.1Overview
	8.8.2Operation examples
	8.8.2.1Point creation/editing
	8.8.2.2Point "Move to"
	8.8.2.3Point sorting
	8.8.2.4Batch deletion of points

	8.9Path list
	8.9.1Overview
	8.9.2Operation examples

	8.10IO signal list
	8.10.1Overview
	8.10.2Operation examples

	8.11User frame list
	8.11.1Overview
	8.11.2Operation examples

	8.12Tool list
	8.12.1Overview
	8.12.2Basic concept
	8.12.2.1Tool center point
	8.12.2.2Tool frame
	8.12.2.3Load parameters
	8.12.2.4Load identification
	8.12.2.5TCP correction
	8.12.2.6Use of tool frame
	8.12.2.7External tools and handheld tools

	8.12.3Operation examples
	8.12.3.1New handheld tool
	8.12.3.2New external tool
	8.12.3.3Use of TCP correction

	8.13Work object list
	8.13.1Overview
	8.13.2Use of work object frame
	8.13.3Operation examples
	8.13.3.1New external work object
	8.13.3.2New handheld work object

	8.14Variable monitoring selection interface
	8.14.1Overview
	8.14.2Operation examples
	8.14.2.1Batch add monitored variables
	8.14.2.2Single add monitored variable

	8.15About RL program
	8.15.1RL program format and syntax
	8.15.1.1Overview
	8.15.1.2Program structure

	8.15.2RL program debugging
	8.15.2.1Program pointer
	8.15.2.2Motion pointer
	8.15.2.3Move program pointer
	8.15.2.4Single-step debugging
	8.15.2.5Step back debugging
	8.15.2.6Step back use
	8.15.2.7Step back use restrictions
	8.15.2.8Regain path
	8.15.2.9Loop mode
	8.15.2.10Lookahead mechanism
	8.15.2.10.1Basic concept
	8.15.2.10.2Motion commands
	8.15.2.10.3Non-stop lookahead commands
	8.15.2.10.4Turning zone execution commands
	8.15.2.10.5Stop lookahead commands

	8.15.2.11Interrupt function

	8.15.3Debugging example

	9Setting
	9.1Introduction to this chapter
	9.2Controller settings
	9.2.1Basic settings
	9.2.1.1System information
	9.2.1.2System configuration
	9.2.1.3System time
	9.2.1.4System IP properties

	9.2.2Advanced settings
	9.2.3Authorization settings
	9.2.3.1EtherCAT authorization
	9.2.3.2Function authorization

	9.3HMI settings
	9.3.1Basic settings
	9.3.2Teach Pendant mode

	9.4User group
	9.5Calibration
	9.5.1Zero calibration
	9.5.2Soft calibration
	9.5.3Force sensor calibration

	9.6Calibration of the base frame
	9.6.1Manual input
	9.6.2Six-point calibration

	9.7Frame calibration
	9.7.1Global tool list
	9.7.1.1Overview
	9.7.1.2Basic concept
	9.7.1.3Operation example - creating a global handh
	9.7.1.4Operation example - creating a global exter

	9.7.2Global work object list
	9.7.2.1Overview
	9.7.2.2Operation example - creating a global exter
	9.7.2.3Operation example - creating a global handh

	9.7.3Global user frame list
	9.7.3.1Overview
	9.7.3.2Operation examples

	9.8Dynamic settings
	9.8.1Dynamic feedforward
	9.8.2Dynamic constraint
	9.8.3Vibration suppression

	9.9Body parameters
	9.9.1RD parameters
	9.9.2DH parameters
	9.9.3Reduction ratio
	9.9.4Overload coefficient
	9.9.5Coupling coefficient

	9.10Motion parameters
	9.10.1Basic motion parameters
	9.10.2Advanced settings
	9.10.2.1Safety control
	9.10.2.2Search command max stop distance
	9.10.2.3Minimum turning zone radius
	9.10.2.4Stacking debug mode
	9.10.2.5Default Conf

	9.11Force control parameters
	9.11.1Force control parameters
	9.11.2Force control model
	9.11.3Drag optimization
	9.11.4Drag without end-effector button operations
	9.11.5Force control model deviation threshold sett
	9.11.6Dual-channel sensor deviation threshold sett

	9.12Quick adjustment
	9.13Electronic nameplate
	9.14Error code alarm filtering
	9.15Custom buttons
	9.15.1Custom button disable function
	9.15.2Custom button - Insert Next Row

	10Communication
	10.1Introduction to this chapter
	10.2System IO
	10.2.1System input
	10.2.2System output

	10.3External communication
	10.3.1Overview
	10.3.2Configurations
	10.3.3Interactive commands

	10.4Bus devices
	10.4.1Overview of bus devices
	10.4.2Bus devices parameter configuration
	10.4.2.1Modbus communication
	10.4.2.2Modbus TCP configuration
	10.4.2.3Modbus RTU configuration
	10.4.2.4CC-Link communication
	10.4.2.5CC-Link configuration
	10.4.2.6EtherCAT communication
	10.4.2.7PROFINET communication
	10.4.2.8Ethernet/IP communication

	10.5Register
	10.5.1Overview of registers
	10.5.2Register parameter configuration
	10.5.3Register type
	10.5.4Register function code
	10.5.4.1Read-only function code
	10.5.4.2Write-only function code

	10.5.5RL read/write register example
	10.5.5.1Command
	10.5.5.2Assignment

	10.5.6Register remote control
	10.5.6.1Procedure
	10.5.6.2Command format
	10.5.6.3Command description
	10.5.6.4Error code

	10.5.7Register import and export
	10.5.7.1Register export
	10.5.7.2Register import
	10.5.7.3Conflict checking during register import

	10.6IO device
	10.6.1Overview
	10.6.2Parameter configuration
	10.6.3Modbus expansion IO example

	10.7End-effector
	10.8RCI settings
	10.9xPanel settings
	10.10Electric gripper and suction cup
	10.10.1Overview
	10.10.2Configurations
	10.10.2.1Jodell electric grippers
	10.10.2.2Jodell suction cup
	10.10.2.3Robustmotion electric gripper
	10.10.2.4Robotiq 2F_85 electric gripper
	10.10.2.5DH electric gripper

	10.11Serial port settings
	10.12Encoder
	10.13OPC-UA
	10.13.1Overview
	10.13.2Open and close
	10.13.3Safety
	10.13.4Certificate
	10.13.5Custom variable configuration
	10.13.6Event

	11Safety
	11.1Introduction to this chapter
	11.2Safety password
	11.3Joint limit
	11.3.1Highlights
	11.3.2Joint position
	11.3.2.1Highlights
	11.3.2.2Handling for moving beyond the joint posit

	11.3.3Joint velocity
	11.3.4Joint torque
	11.3.5Joint power

	11.4Robot limits
	11.5Virtual wall
	11.5.1Highlights

	11.6Collision detection
	11.6.1Highlights
	11.6.1.1Setting mode
	11.6.1.2Impact limit
	11.6.1.3Trigger behavior
	11.6.1.4Driving torque limit
	11.6.1.5Parameter identification
	11.6.1.6Maximum output torque monitoring

	11.6.2Notes

	11.7Safe region
	11.7.1Highlights
	11.7.2Association of safe region and register
	11.7.2.1Safe region status output
	11.7.2.2Register control safe region enable

	11.7.3Safe region retraction function
	11.7.3.1Retraction function introduction
	11.7.3.2Retraction function operation procedure

	11.8Tool setting
	11.8.1Tool position
	11.8.2Tool orientation

	11.9Safety position
	11.9.1Highlights
	11.9.2Association of safety position and register

	11.10Safety checksum
	11.11Safety controller
	11.11.1Changes after equipping safety controllers
	11.11.1.1Changes to robot motor state
	11.11.1.2Added robot reset
	11.11.1.3Changes to the safety gate logic
	11.11.1.4Time difference between zero calibration

	11.11.2Safety DO configuration

	12Process Package
	12.1Conveyor belt tracking
	12.2Track
	12.3General stacking
	12.4Tray
	12.5PV typesetting
	12.6PV inserting

	13Log
	13.1HMI logs
	13.2Controller logs
	13.3Operation logs
	13.4Log timeline
	13.5Internal logs
	13.6Hardware status
	13.7Diagnostic setting
	13.8Working condition verification

	14Options
	14.1Connect
	14.2About ROKAE
	14.3Software upgrade
	14.3.1Controller upgrade
	14.3.2Controller backup
	14.3.3HMI upgrade
	14.3.4Restart robot
	14.3.5Erase configuration
	14.3.6Erase all configurations
	14.3.7Example of control system upgrade

	14.4Export
	14.5Import
	14.6File manager
	14.7Demos
	14.7.1Seven-axis redundant motion
	14.7.2Obstacle avoidance
	14.7.3Collision detection
	14.7.4Compliance demo

	15RL Commands
	15.1Variable Type
	15.1.1Int
	15.1.2Double
	15.1.3Bool
	15.1.4String
	15.1.5Array
	15.1.6byte
	15.1.7clock
	15.1.8Implicit type conversion
	15.1.9Confdata
	15.1.10jointtarget
	15.1.11load
	15.1.12orient
	15.1.13pos
	15.1.14pose
	15.1.15robtarget
	15.1.16signalxx
	15.1.17speed
	15.1.18tool
	15.1.19Trigdata
	15.1.20wobj
	15.1.21zone
	15.1.22torqueinfo
	15.1.23SocketServer
	15.1.24SocketConn
	15.1.25FCBoxVol
	15.1.26FCSphereVol
	15.1.27intnum

	15.2Basic variable and structure
	15.2.1Composition of structure
	15.2.2Use of structure

	15.3Function
	15.3.1Function definition
	15.3.1.1PROC
	15.3.1.2FUNC
	15.3.1.3TRAP

	15.3.2Function call

	15.4Commands
	15.4.1Variable type conversion
	15.4.1.1ByteToStr
	15.4.1.2DecToHex
	15.4.1.3DoubleToByte
	15.4.1.4DoubleToStr
	15.4.1.5HexToDec
	15.4.1.6IntToByte
	15.4.1.7IntToStr
	15.4.1.8EulerToQuaternion
	15.4.1.9QuaternionToEuler

	15.4.2Motion commands
	15.4.2.1MoveAbsJ
	15.4.2.2MoveJ
	15.4.2.3MoveL
	15.4.2.4MoveC
	15.4.2.5MoveCF
	15.4.2.6MoveT
	15.4.2.7MoveSP
	15.4.2.8SearchL
	15.4.2.9SearchC

	15.4.3Trigger command
	15.4.3.1TrigIO
	15.4.3.2TrigReg
	15.4.3.3TrigVar
	15.4.3.4TrigL
	15.4.3.5TrigC
	15.4.3.6TrigJ

	15.4.4Force control commands
	15.4.4.1CalibSensorError
	15.4.4.2FcInit
	15.4.4.3SetControlType
	15.4.4.4SetCartNsStiff
	15.4.4.5SetJntCtrlStiffVec
	15.4.4.6SetCartCtrlStiffVec
	15.4.4.7SetJntTrqDes
	15.4.4.8SetCartForceDes
	15.4.4.9SetSineOverlay
	15.4.4.10SetLissajousOverlay
	15.4.4.11SetLoad
	15.4.4.12FcStart
	15.4.4.13FcStop
	15.4.4.14StartOverlay
	15.4.4.15PauseOverlay
	15.4.4.16RestartOverlay
	15.4.4.17StopOverlay
	15.4.4.18FcCondForce
	15.4.4.19FcCondPosBox
	15.4.4.20FcCondTorque
	15.4.4.21FcCondWaitWhile
	15.4.4.22FcMonitor
	15.4.4.23GetEndToolTorque
	15.4.4.24SetFcJointVelMax
	15.4.4.25SetFcCartVelMax
	15.4.4.26SetFcJointMomentumMax
	15.4.4.27SetFcJointEnergyMax

	15.4.5Drag and replay
	15.4.5.1ReplayPath

	15.4.6IO commands
	15.4.6.1SetDO
	15.4.6.2SetAllDO
	15.4.6.3SetGO
	15.4.6.4SetAO
	15.4.6.5PulseDO
	15.4.6.6PulseReg

	15.4.7Communication commands
	15.4.7.1OpenDev
	15.4.7.2SocketAccept
	15.4.7.3CloseDev
	15.4.7.4SendString
	15.4.7.5SendByte
	15.4.7.6ReadBit
	15.4.7.7ReadByte
	15.4.7.8ReadDouble
	15.4.7.9ReadInt
	15.4.7.10ReadString
	15.4.7.11GetSocketConn
	15.4.7.12GetSocketServer
	15.4.7.13GetBufSize
	15.4.7.14ClearBuffer
	15.4.7.15ReadOpcUaVarByName
	15.4.7.16WriteOpcUaVarByName

	15.4.8Network command
	15.4.8.1SocketCreate (expired)
	15.4.8.2SocketClose (expired)
	15.4.8.3SocketSendString (expired)
	15.4.8.4SocketSendByte (expired)
	15.4.8.5SocketReadBit(expired)
	15.4.8.6SocketReadDouble(expired)
	15.4.8.7SocketReadInt(expired)
	15.4.8.8SocketReadString(expired)

	15.4.9Logic commands
	15.4.9.1Return
	15.4.9.2Wait
	15.4.9.3WaitUntil
	15.4.9.4Break
	15.4.9.5IF…Else if…Else
	15.4.9.6Goto
	15.4.9.7For
	15.4.9.8Continue
	15.4.9.9Inzone
	15.4.9.10While
	15.4.9.11Pause
	15.4.9.12try/catch
	15.4.9.13SwitchCase

	15.4.10Home command
	15.4.10.1Home
	15.4.10.2HomeSet
	15.4.10.3HomeSetAt
	15.4.10.4HomeDef
	15.4.10.5HomeSpeed
	15.4.10.6HomeClr

	15.4.11Math command
	15.4.11.1Sin
	15.4.11.2Cos
	15.4.11.3Tan
	15.4.11.4Cot
	15.4.11.5Asin
	15.4.11.6Acos
	15.4.11.7Atan
	15.4.11.8Sinh
	15.4.11.9Cosh
	15.4.11.10Tanh
	15.4.11.11Exp
	15.4.11.12Ln
	15.4.11.13log10
	15.4.11.14pow
	15.4.11.15sqrt
	15.4.11.16ceil
	15.4.11.17floor
	15.4.11.18abs
	15.4.11.19rand

	15.4.12Bit operation
	15.4.12.1BitAnd
	15.4.12.2BitCheck
	15.4.12.3BitClear
	15.4.12.4BitLSh
	15.4.12.5BitNeg
	15.4.12.6BitOr
	15.4.12.7BitRSh
	15.4.12.8BitSet
	15.4.12.9BitXOr

	15.4.13String operations
	15.4.13.1StrFind
	15.4.13.2StrLen
	15.4.13.3StrMap
	15.4.13.4StrMatch
	15.4.13.5StrMemb
	15.4.13.6StrOrder
	15.4.13.7StrPart
	15.4.13.8StrSplit
	15.4.13.9StrToByte
	15.4.13.10StrToDouble
	15.4.13.11StrToInt
	15.4.13.12StrToDoubleArray

	15.4.14Operators
	15.4.14.1Basic operators
	15.4.14.1.1Arithmetic operators
	15.4.14.1.2Logical operators
	15.4.14.1.3Assignment operators
	15.4.14.1.4Other operators

	15.4.14.2Operation priority

	15.4.15Clock commands
	15.4.15.1ClkRead
	15.4.15.2ClkReset
	15.4.15.3ClkStart
	15.4.15.4ClkStop

	15.4.16Advanced commands
	15.4.16.1RelTool
	15.4.16.2Offs
	15.4.16.3ConfL
	15.4.16.4ConfJ
	15.4.16.5Conf
	15.4.16.6VelSet
	15.4.16.7AccSet
	15.4.16.8MotionSup
	15.4.16.9MotionSupPlus
	15.4.16.10MotionSupJointTrq
	15.4.16.11BreakLookAhead
	15.4.16.12GetRobotMaxLoad
	15.4.16.13GetRobotState
	15.4.16.14AutoIgnoreZone
	15.4.16.15MotionWaitAtFinePoint true/false
	15.4.16.16IgnoreOverride
	15.4.16.17SingAreaLockAxis4
	15.4.16.18SpeedRefresh
	15.4.16.19CSpeedOverride
	15.4.16.20SingAreaJointWay
	15.4.16.21SingAreaWrist
	15.4.16.22SetRobotJointsMaxAcc
	15.4.16.23SetRobotJointsMaxJerk
	15.4.16.24ResetJointKineLimit
	15.4.16.25SetTransmissionOverloadParams
	15.4.16.26ResetTransmissionOverloadParams
	15.4.16.27SetAccRampTime
	15.4.16.28ResetAccRampTime
	15.4.16.29SetVarValue
	15.4.16.30SetStopAccRampTime
	15.4.16.31ResetStopAccRampTime
	15.4.16.32MotionSupJointTrq
	15.4.16.33PathRecStart
	15.4.16.34PathRecStop
	15.4.16.35PathRecBwd
	15.4.16.36PathRecFwd
	15.4.16.37GetRecStartStatus
	15.4.16.38SetMaxMotionJerk
	15.4.16.39VibSuppression

	15.4.17Function commands
	15.4.17.1CRobT
	15.4.17.2CJointT
	15.4.17.3CalcJointT
	15.4.17.4CalcRobt
	15.4.17.5Print
	15.4.17.6Print_f
	15.4.17.7PoseMult
	15.4.17.8PoseInv
	15.4.17.9GetRobABC
	15.4.17.10SetRobABC
	15.4.17.11RotRobABC
	15.4.17.12OpMode

	15.4.18Register commands
	15.4.18.1ReadRegByName
	15.4.18.2WriteRegByName
	15.4.18.3ReadRegByteByName
	15.4.18.4WriteRegByteByName

	15.4.19End-effector commands
	15.4.19.1JodellGripInit
	15.4.19.2JodellGripMove
	15.4.19.3JodellGripStatus
	15.4.19.4JodellSuckInit
	15.4.19.5JodellSuckSet
	15.4.19.6JodellSuckStatus
	15.4.19.7RMRGMGripInit
	15.4.19.8RMCGripInit
	15.4.19.9RMRGMGripPosMove
	15.4.19.10RMCGripPosMove
	15.4.19.11RMRGMGripTrqMove
	15.4.19.12RMCGripTrqMove
	15.4.19.13RMRGMGripStatus
	15.4.19.14RMCGripStatus
	15.4.19.15RMRGMResetErr
	15.4.19.16RMCResetErr
	15.4.19.17RobotiqGripInit
	15.4.19.18RobotiqGripGetStatus
	15.4.19.19RobotiqGripMove
	15.4.19.20DhGripInit
	15.4.19.21DhGripGetStatus
	15.4.19.22DhGripMove

	15.4.20Interrupt commands
	15.4.20.1IRegister
	15.4.20.2IEnable
	15.4.20.3IDisable
	15.4.20.4GetTrapData

	16Appendix
	16.1Details of user permission
	16.2Introduction of collaborative robot's end-effe
	16.2.1ER series
	16.2.2CR series

	16.3Point position and path teaching (based on the
	16.3.1Point position teaching
	16.3.2Path teaching

	16.4OPC-UA Robotics model
	16.4.1MotionDevices model
	16.4.1.1Axes child nodes
	16.4.1.2PowerTrains child nodes

	16.4.2Controllers model
	16.4.2.1Software child nodes
	16.4.2.2TaskControls child nodes

	16.4.3SafetyStates
	16.4.4CustomVariables

	17Troubleshooting
	17.1Control System Error Codes
	17.1.11XXXX
	17.1.23XXXX
	17.1.34XXXX
	17.1.45XXXX
	17.1.56XXXX

